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The reference hypernetted chain equation (RHNC) for a fluid of dipolar hard diatomics was
solved numerically. Three choices for the reference bridge function B,(12), were examined.
The simplest, B,(12) = 0 (HNC) and B,(12) corresponding to the uncharged homonuclear
hard diatomic fluid, computed from simulation data and by the Percus—Yevick approximation.

The computed fluid structure {i.e., the g(12) expansion coefficients ] showed a remarkable
quantitative agreement with the structure obtained from a mean reaction field Monte Carlo
simulation. The same applied to the configurational energy. The values for the dielectric
constant, however, furnished only qualitatively indications of the density dependence of this
quantity. The probable origin of this discrepancy is analyzed.

1. INTRODUCTION

It has been firmly established that the influence of mole-
cule shape on the structure and macroscopic properties of
dipolar fluids must not be overlooked.'~> However, to date
very little progress has been achieved in applying theoretical
methods to the study of fluids composed of nonspherical
particles carrying high dipole moments, even though in re-
cent years integral equation methods (in particular the refer-
ence hypernetted chain equation*~’) have proved to be very
successful tools in determining the structure and dielectric
properties of polar fluids consisting of spherically shaped
particles. To our knowledge, dipolar fluids of anisotropic
particles have been considered mostly in the context of the
site-site Orstein—Zernike (OZ) equation® using mean
spherical approximation-like (MSA) and hypernetted
chain-like (HNC) closures.>!® Although such site—site ap-
proaches may offer advantages in certain cases (e.g., com-
parison with experimental atom-atom structure factors),
procedures furnishing the molecular pair distribution func-
tion g(12) are generally preferable, since this latter function
contains more information about the system than its site—site
counterparts. In this respect, some attempts have been made
to apply perturbation theories that yield the full g(12) func-
tion to dipolar molecular fluids. Steinhauser and Bertag-
nolli'' used a perturbation treatment with a nonspherical
reference system in conjunction with the Percus—Yevick
(PY) approximation. Their results showed sizeable devia-
tions for some of the expansion coefficients of g(12) (as
compared to experimental data), although the computed
values for the dielectric constant appeared to agree quite well
with the experimental results. An important drawback at-
taching to this sort of theory lies in the complexity of the
reference system, whose properties tend to be unavailable.

The use of the RHNC equation, which, as just men-
tioned above, proved quite successful for dipolar systems of
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spherically shaped particles, is an attractive alternative to
perturbation techniques. In this paper, we report on solu-
tions to the RHNC equation for a model of dipolar fluids
previously studied by us using a mean reaction field Monte
Carlo simulation.® We have investigated different choices
for the bridge function, B(12), in the RHNC equation,*
namely B(12) = 0 [ which reduces to the hypernetted chain
approximation (HNC)] and B(12) = B,(12), B,(12) be-
ing the bridge function for the reference system, an un-
charged hard diatomic with the same shape as the dipolar
molecule; the corresponding spherical harmonic coefficients
of the function B,(12) were determined by the authors from
MC data and the PY aproximation.'? These two approaches
will be hereinafter referred to as RHNC (MC) and RHNC
(PY), respectively.

Section II describes the model for the polar fluid for
which computations were performed, and sets out the chief
expressions relating microscopic structure [i.e., the pair dis-
tribution function, g(12), or its spherical harmonic coeffi-
cients] to macroscopic properties. For the sake of complete-
ness, Sec. IT B summarizes the algorithm used to solve the
RHNC equation, which has been fully described else-
where.*>7 Section III considers the numerical results for the
microscopic structure (spherical harmonic coefficients),
configurational energy, and dielectric properties.

Il. SUMMARY OF THE THEORY

In this section we first examine the explicit expression of
the interaction potential for our polar fluid model and the
relations for thermodynamic and dielectric properties which
can subsequently be derived. We will also briefly summarize
the main points concerning solution of the RHNC equation
for a fluid made up of linear molecules. ‘
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A. A theoretical model for dipolar diatomic fluids

The chief characteristics of a dipolar molecular liquid
are, clearly, molecular anisotropy and dipole moment. The
simplest system capable of modeling such a fluid is doubtless
the dipolar homonuclear hard diatomic. Earlier we investi-
gated this model in some detail® by means of a Monte Carlo
simulation with the mean reaction field technique to handle
the long-range interactions. In order to remain consistent
with our previous computations, we have again used here the
same set of molecular parameters set out in our previous
paper.® The MC data can thus be used as benchmark results
for testing our theoretical predictions. Consequently, the di-
polar potential must include the reaction field term, and
hence the full pair potential is expressed

u(12) = uyp, (12) + «MRF(12) (n)
with

2 + 2
_H przegpy _2(€ =1 B g
r (2 2€+1 R,

MRF(12) = 2
" (12) if r<®., (2)

0 if >R,

where uyp, (12) denotes the pair potential of an uncharged
hard diatomic (in this case, two fused hard spheres of diame-
ter o and a separation between centers / = 0.60), p is the
dipole moment, R, is the cutoff radius and €' is the dielectric
constant outside the truncation sphere. The last two param-
eters are only meaningful in the context of the mean reaction
field approach. We have set € to 50 and R_ to 40, for consis-
tency with the MC calculations. The quantities $'2(12)
and ®'1°(12) are rotational invariants that can be expressed
in terms of the molecular orientations as

®'10(12) =s;°s,
(3)
®12(12) = 3(s, 1) (8,°1)/P — (8;°8,),

where s, is a unit vector that describes the dipole orientation
of particle / and r is the vector joining the centers of mole-
cules 1 and 2.

Within this choice of interaction potential, the configu-
rational energy of the dipolar fluid can be written

RC
Bupp, = — 3yf R (ryr=tdr
(]

3 2 —1) JRC 116
——p = | A 7 dr, 4)
27 et b O (
where y = 4mpu®/9kTo® and h ''°(r) and 4 '**(r) are
h1O(r) = gy10(r) — 2810, (1),
(5
RU2(r) =g110(r) + 810a (1),

the functions g, (r) being the coefficients of the spherical
harmonic expansion of the molecular pair distribution func-
tion. The Kirkwood relation for the dielectric constant!® was
also modified to yield the following expression'*:

(e—1Qe+ 1)

= y 6
3e + 2¢) Y8« (6a)
g =1 +§piz 11o(0)
=1+-4§7T-pf ROy dr. (6b)
0

In the above expression the tilde denotes a Fourier trans-
form, and g, is the Kirkwood g factor, obtainable from simu-
lation as g, = (M?)/Ny? where M = Zp,.

It is customary to define a reduced squared dipole mo-
mentu* = 478u*/0 a quantity that in our model has been
set to u* = 2.452 (which implies a high dipole strength).
The density dependence of the results was investigated by
performing calculations at several densities (p* = po°),
namely p* = 0.2, 0.3, 0.4352, and 0.5 (this last case was
computed only for the HNC approximation). It should be
mentioned here that, while the use of point dipoles for dipo-
lar molecular fluids is unusual in simulations (although in
Ref. 3 it was shown that such models accounted quite well
for the most interesting features of dipolar fluids), Stein-
hauser et al.'! also employed a point dipole potential to de-
termine theoretically the g(12) expansion for a molecular
polar fluid.

B. Solution of the RHNC equation
The RHNC equation for linear fluids is

S(12) zf——fc(l3)[5(32) + ¢(32) 1dw, drs, (7
T

c(12) = exp] — Bu(12) + S(12) — By(12)]
—1—-5(12), (8)

where Eq. (7) is the Orstein—Zernike (OZ) relation for
S=h-c and Eq. (8) is the RHNC closure, in which
B,(12) is the bridge function for the reference system. Note
that Eq. (8) differs from the RHNC closure presented in
Refs. 4, 5, and 7 in the sign of the bridge function. The special
form of Eq. {8) was chosen for consistency with the bridge
function previously computed by the authors'? and is the
same as that set out in several other papers (e.g., Ref, 15).
Various choices are available for the function B;(12): it may
either be set to zero (HNC equation) or the values for any
given reference system may be used. For this latter instance
we considered the natural reference fluid to be the un-
charged hard diatomic. The values for this B,(12) were ob-
tained earlier by the authors'® by means of MC simulation
and the Percus-Yevick approximation. Use of a form of
B, (12} in the PY approximation for a hard diatomic in Eq.
(8) renders a PY closure relation only at the limit of vanish-
ing dipole strength, and therefore with this choice of B,(12)
the long-range behavior of the fluid can be expected to be
taken adequately into account by Eq. (8). Direct use of the
PY closure would not be sensible for long-range potentials.
In a similar context, Lado®® employed a B,(12) for a hard
diatomic fluid in the PY approximation as the reference
function for a two center Lennard-Jones (LJ) fluid, with
excellent results. Optimization of the reference-hard-di-
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atomic diameter o, which considerably improved the results
for Lennard-Jones (LJ) fluid, is extremely time consuming
yet does not play a crucial role when only dipolar potentials
are involved’; therefore, the nonoptimized version of the the-
ory only was used in the present instance.

The pair functions appearing in Eqs. (7) and (8) must
be expanded in spherical harmonics as

S(lz)=47TZSklm(rIZ)Ykm(wl)Yl—m(a)Z) %

kim

and similarly for the functions ¢(12) and B,(12). Equation
(7) must be solved in Fourier space, becoming

S(k,w,mw,) = L Jé(k’wl’w3)
44
X [S(k,@,03) + ¢(kw,0;)do,.  (10)

Using expansions similar to those given in Eq. (9) (but
with a rotated reference frame) in Fourier space in Eq. (10)
while taking into account the orthogonality of the spherical
harmonics, yields the following set of matrix equations

S, (k) =(—1D"p[I— (= D&, (k)] ' [E. (0]
(11)
where Lis the identity matrix. The elements of theS,, and &,
matrices are S, (k) and &, (#), respectively. Simulta-
neously, the closure relation (8) can be rewritten as

Cram (F12) = (g(F120,,0,) |klm)

+5k1m,ooo — Sitm (112) (12)
with

g(rw,w,) = exp[ —Bu(12) + 47 Y [Sua (r12)

mes

- Bouwl (r12) ] Y,ufl (0pY,_; (0)2)}

and (...|kIm) denotes the projection onto the product
Yim (@)Y, _, (@5).

Thus, once an initial solution [a set of S, (7) ] is avail-
able, the ¢,,,, () can be computed by using Eq. (12). After
some mathematical manipulation these functions yield the
set of &, (k). Note that ¢,,,, (k) are not the Fourier trans-
forms of ¢,,,, (), and consequently the procedure implies a
change of reference frame and a Hankel transform.*® Full
details are available in Ref. 4. Inserting the &,,,, (k) coeffi-
cients into Eq. (12) gives the set of Sy, (k), which can be
inverted to give a new set of Sy, (7), and a new iteration may
proceed from Eq. (11). As indicated in Ref. 4, Gillan’s
method!® for the radial coefficient Syy,(7), is very conven-
ient to speed up convergence. An important part of this algo-
rithm was implemented in a program published in the litera-
ture,'” which we modified to account for dipolar potentials.

lll. RESULTS

The RHNC solutions were obtained using 512 and 1024
grid points at a grid width of Ar = 0.020. Unlike the case of
dipolar hard spheres,’ the results were not very sensitive to
the number of grid points. On the other hand, the crux of the

computation is the number of points used in the angle aver-
ages of Eq. (12). In the region (0 —§*)"?*<r<1+o0,in
which the highest degree of anisotropy is to be expected, 30
points per angle in Gaussian integrations® seemed to ensure
the required accuracy. When 7> 1 + ¢, the interaction is
simply the dipole—dipole potential of Eq. (2), which is a
continuous smooth function, and ten points per angle were
used in the averaging. For r < (0° — }?)'/2 the hard core of
our model implies g(12) = 0.

A. Pair correlation function

The pair correlation function 2(12) = g(12) — 1 was
examined in terms of its spherical harmonic coefficients,
namely the radial distribution function gy, (7) as well as the
projections & ''°(r) and 4 ''?(r). These functions are shown
in Figs. 1-3 for p* = 0.4352. Discrepancies between simula-
tion and theory are, obviously, less appreciable at lower den-
sities. The various theoretical approaches derived from dif-
ferent choices of B,(12) have been indicated in the figures by
different types of lines.

Figures 1-3 show the theoretical results to agree re-
markably well with the simulation values. Specifically, the
HNC approximation reproduced the MC functions / ''° and
h 2 almost exactly (Figs. 2 and 3). A small deviation can be
observed in the positions of the maxima and minima for the
coefficient gqoo (Fig. 1). The RHNC approximation |par-
ticularly the RHNC (MC)] slightly improved the HNC,
such that the MC values for gy, (7) appeared on the RHNC
(MC) gooo curve (Fig. 1), with the exception of a shoulder
occurring in the region o <r< 1+ o. There is a related,
though somewhat larger, departure in the 4 ''? curve (Fig.
3); still, when translated into macroscopic properties by Eq.
(4), it turned out to have very little effect. In our opinion,
this discrepancy was a spurious effect caused by uncertain-

207 T T T T T
AN p* =0.435
15 3 4
\
= )
(=] R\
g 1o~ | W
o / //
/
|
0.5 / — RHNC (MC) -
I —— HNC
—-—- RHNC (PY)
. MC
| 1 | ! i |
0.0 [ 2 3

rlo

FIG. 1. The radial distribution coefficient gy, for p* = 0.435. The lines
stand for different choices of B,(12) in the RHNC (see the text) and the
dots correspond to simulated data.
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FIG. 2. (a) The projection A ''® of the total correlation function for
p* = 0.435. The symbols have the same meaning as in Fig. 1. (b) A detail of
the long-range behavior of /4 ''° computed via simulation (dots) and in the
HNC approximation (dashed line).

ties in the determination of the bridge function B;(12) from
the MC data."?

The long-range behavior of the coefficient 4 ''® is of spe-
cial interest, since it makes a major contribution to the di-
electric properties. Therefore, the upper right-hand corner
of Fig. 2 depicts a detail of the £ ''° function in the range
20 <r< 50, for which MC results were available. The
dashed line is the HNC solution, the long-range behavior of
which did not differ perceptibly from that computed using
the RHNC (MC) or RHNC (PY). It is readily apparent
that theory and simulation disagreed only to a very small
extent. The discontinuity at » = R, (40) occurred in both
the MC and the theoretical results. A similar discontinuity
also appeared in the 4 ''? coefficient. Both were artifacts of
the MRF boundary conditions and would not appear in the
case of infinite-range dipolar potentials. Only the discontin-

0817 T T T T T

J
06 ) —— RHNC (MC) 7]
------ RHNC (PY)

—-— HNC

e MC

h12(r)

rlo

FIG. 3. The projection /4 '' of the total correlation function for p* = 0.435.
The symbols have the same meaning as in Fig. 1.

uity in function 4 ''? has been reported for spherically shaped
particles.'”'8

B. Configurational energy

Once the coefficients 4 ' and 4 !'? have been calculated,
the configurational energy can readily be computed from
Eq. (4). The results have been summarized in Table I, to-
gether with the simulated values from Ref. 3. The good
agreement between theory and simulation was a conse-
quence of the quality of the computed function /# !'? and the
fact that Eq. (4) tends to minimize the effect of inaccuracies,
especially for large values of r. Larger deviations were ob-
servable in the RHNC (PY) results, whereas the HNC val-
ues reproduced the simulated energies within their statistical
uncertainties. The HNC approximation yielded a configura-
tional energy in accordance with the simulated value for the
500-particle sample, which differed by 2% from the results
for the 256-particle sample.?

C. Dielectric constant and Kirkwood g factor

The dielectric constant € can be expressed in terms of the
mean squared dipole {M?) moment of the sample through
Eq. (6), where g, = (M?)/Nu? is the Kirkwood g factor.
The results for g, computed by the RHNC integral equation
using Eq. (6b) are set out in Table I1. Note that the & ''° (0)
value is readily available in the procedure for solving the
integral equation. This avoids integration of 74 ''° in Eq.
(6b), thereby removing a further potential source of error.”
Both numerical methods produce the same result if a suffi-
ciently large number of grid points is used (hence the agree-
ment improved when 1024 points were used) as well as at
low densities. The values given in Table II were obtained by
means of the transforms. The simulated values for (M?)_/
Nu? ({...). denotes that the average has been calculated
throughout the cubic simulation cell) from Ref. 3 are also
presented in Table II. The theoretical values of (M 2)/Nu?
can be seen to differ somewhat from the simulated values,
the difference obviously being larger at higher densities. Fur-
thermore, introducing the function B,(12) did not substan-
tially alter the g factors computed, and the RHNC (MC),
RHNC (PY), and HNC results were quite similar. None-
theless, the theoretical values reproduced one of the main
features of simulated g-factor values in molecular fluids,
namely their proximity to the Onsager resultg, = 1.' On the
other hand, another characteristic, seemingly exhibited only

TABLE 1. Comparison between RHNC (MC), RHNC (PY), and HNC
results for B(Upp)/N vs the simulated values.

RHNC
o* MC B, (MC) B, (PY) HNC
02 —0.582+5%x10"% 0575 —0.573 —0.583
03 —0806+5x10~* ~0.791 —0.789 —0.807
0435 —1.089+5%x107% —1.054 —1.050 —1.088
0.5 —1.23345x10~* —1.230
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TABLE I1. Comparison between RHNC (MC), RHNC (PY), and HNC
results for {M?2)/Nu? vs the simulated values.

RHNC

o* MC Byn(MC) B,,,(PY)  HNC
0.2 1.03 4+ 0.03 1.218 1.220 1.210
0.3 1.31 + 0.04 1.252 1.255 1.231
0.435 0.85 + 0.04 1.259 1.281 1.225
0.5 0.63 + 0.03 1.190

by molecular dipolar fluids, the saturation effect in the g,
factor values as density increases (a consequence of the
steric hindrance of the free rotation of the molecules),> was
qualitatively accounted for. The HNC results (for which
values were obtained at p* = 0.5) for g, actually decreased
in a fashion similar to the MC values. Nevertheless, the theo-
retical predictions for g, did not match those for the configu-
rational energy or the expansion coefficients. Table III pre-
sents the dielectric constant values obtained using the g
factors from Table Il in Eq. (6a). The aforementioned satu-
ration effect, though actually present in the g, values, was
not observable in our theoretical € values, since it was
masked by Eq. (6a). In contrast, the simulated € values fell
at p* =0.4352, in response to the sharp decrease in g,,
though here, too, the effect was damped somewhat by Eq.
(6a).

There are several questions concerning our theoretical
results and the relative failure in the computation of ¢, to
which special attention should be addressed. First, it is sur-
prising that the theories employed, which proved quite accu-
rate in determining the microscopic structure and configura-
tional energy, yielded relatively poor results for the
dielectric properties. Second, it has been well established
that the RHNC theory using a reference bridge function for
a hard-sphere system furnished quite accurate results for €
for dipolar hard spheres.® In our case, a similar approach
[RHNC (MC)] did not seem to improve the HNC [ B,(12)
= 0] results at all. These questions are examined below.

In order to provide some information about the sources
of error, Fig. 4 depicts the function

gk(R)=1+%71pLRr2h”°(r)dr (13)
which is expected to fulfill the limiting condition

Jlim g, (R) = g, = (MP)/Np>. (14)
The lines in Fig. 4 represent the HNC solution at different

TABLE III. Comparison between RHNC (MC), RHNC (PY), and HNC
results for € vs the simulated values.

RHNC
p* MC B,,,(MC) B, (PY)  HNC
0.2 32+0.1 3.57 3.57 3.55
0.3 50+ 0.1 5.01 5.02 495
0.435 49402 6.95 7.07 6.79
0.5 44102 7.51

1.2 T T T T T T T

gk (R)

—— p* =0.4352 (HNC)
———— p*=0.2  (HNC)

o MC

0.6 . 1 1 1 1 1 1 i 1

FIG. 4. The R-dependent g factor defined by Eq. (13) in the text. The lines
stand for the HNC solution at different densities: 0.4352 (solid) and 0.2
(dotted). Solid circles represent the MC data for the highest density.

densities; the dots are the values obtained by integrating the
simulated 4 ''° functions. For the sake of clarity, only the
simulated values for p* = 0.4352 have been shown; the re-
sults for lower densities exhibited very similar trends. From
the Fig. 4 it may readily be concluded that the HNC equa-
tion accurately reproduced the short-range structure of
8: (R) (except for a small departure in the first peak) and
hence that of the function 4 ''°, whereas significant devia-
tions occurred for > R.. These discrepancies must be
viewed in the light of the long-range behavior of the function
h '1° depicted in Fig. 2(b). On doing so, it turned out that the
very small disagreement between the HNC equation and the
simulated function 4 ''° gave rise to the large difference ob-
served in g, (r) at R = 50. The upshot of this is that good
theoretical prediction of (M ?)/Nu? requires that the tail of
the function 4 ''° be computed with very high precision. In
fact, the contribution of the short-range structure to the g
factor is rather small, as can be seen from Fig. 4; hence, small
absolute errors in the contribution of the long-range behav-
ior of function 4 ''°bring about large relative errorsin (M 2)/
Nu?. This is why very accurate results for the structure and
energy can be obtained in conjunction with relatively poor
values for e.

The tail of function 4 ''° can be regarded as an effect of
non-negligible indirect correlations across the cutoff radius
and is responsible for the reported differences between
(M?),n/Nit> = g, (R,) ({...),s indicates that the average
was performed within the cutoff sphere) and (M?)_/Nu*
= g,."%!® These indirect correlations should be accounted
for by the bridge function [ which, by definition, is a multiple
convolution of £(12)?°]. It is unlikely that this effect would
be adequately accounted for by a B,(12) function, which
does not even satisfy the symmetry requirements of the di-
pole—dipole potential. Note that the hard-core reference flu-
id is made up of centrosymmetric particles, and this symme-
try is broken by the introduction of the dipolar potential.
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This could explain why the HNC values for € were not basi-
cally modified by the introduction of B,(12) in the closure
relation: the tail of 4 ''® seemingly remained unchanged.
However, the function gggo(7) was improved somewhat in
the RHNC (MC) and RHNC (PY) approaches.

On the other hand, in the case of dipolar hard spheres, €
is also known to be highly dependent on the tail of £ ''%,'* but
since this function is essentially positive for such models, '
the contribution of the short- and medium-range structure is
probably considerable. Errors in the tail of 4 ''® will then
have a smaller effect on the accuracy of €. This explains why
the RHNC approach achieved far better agreement with
simulation for dipolar hard sphere fluids.

Finally dependence on the cutoff radius, another aspect
that has been of interest in the application of the MRF meth-
od to dipolar fluids, was also examined. Several computed
values reproducing those for the infinite range dipolar poten-
tial have been reported for dipolar hard spheres. For in-
stance, Patey et al.'”!8 reported R, = 4.50 whereas Lado et
al.” suggested a value of R, = 6¢ for higher dipole moments
and densities. Our MC computations’ did not show any ap-
preciable sensitivity to changes in R.. In order to confirm
this lack of sensitivity, we solved the HNC equation at
p* = 0.4352 using R, = 40 and 60, and the results of these
computations are shown in Table IV. The dielectric proper-
ties do not seem to be crucially affected by the choice of R,
(obviously, further reductions in R, would increase the ef-
fect substantially ). Moreover, the rise in configurational en-
ergy apparent in Table IV is readily explained as a result of
the increment in the number of particles interacting with any
given molecule as R, augments. It may therefore be conclud-
ed that in molecular fluids, in which shape forces are over-
whelmingly dominant, the effects of small changes in the
range of the dipolar interaction do not introduce substantial
changes in the macroscopic quantities.

IV. CONCLUSIONS

In this paper we have presented the main results ob-
tained by solving the RHNC equation for dipolar hard di-
atomic fluids using different choices for the reference bridge
function. As a general conclusion, the theoretical ap-
proaches here examined provided fairly accurate descrip-
tions of the microscopic structure of the fluids, apparently
even for the long-range behavior of the pair distribution
function. Configurational energy is also correctly predicted
by the theory. However, our results for the dielectric proper-
ties, though qualitatively correct, differed considerably from
the simulated results. Detailed analysis showed the discre-
pancies to arise from very small deviations in the tail of the
function 4 ''°. This tail stemmed from indirect correlations
across the cutoff radius that seemingly are not adequately
accounted for when using the function B;(12) correspond-
ing to an uncharged hard-core system. A related situation

TABLE IV. Thermodynamic and dielectric properties computed in the
HNC approximation using two different truncation distances R..

R /o B{Upp)/N (M?)/Ny? €
4.0 —1.089 1.225 6.79
6.0 —1.097 1.227 6.80

was described by Foiles et al.,>' who investigated the long-
range behavior of B(12) in coulombic fluids in some detail.
They reported that the tail of B(12), though small, was im-
portant and could not be neglected. They also suggested us-
ing of the “real” asymptotic expression for B(12) in combi-
nation with the hard-core B(12), which should account for
the short-range structure. Their method would appear to be
quite promising for improving the results presented herein,
but the numerical procedure is sufficiently involved to have
prevented, its extension to molecular fluids up to now.
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