Background and bridge functions for the homonuclear hard diatomic fluid
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The Monte Carlo method has been used to compute the coefficients of the spherical harmonic
expansion of the function y = g exp(Bu) for a hard diatomic fluid. The “series” function
S(12) is also computed from MC data by means of an integral equation procedure. Thus, the
B,,, (r) terms of the harmonic series of the bridge function B(12) can be easily obtained. The
spherical harmonic expansion has proved an efficient tool to deal with these angular functions
since the series is very rapidly convergent. We also have investigated the Percus-Yevick
approximation both for the S(12) and the B(12), and a remarkable qualitative agreement with

our MC data is found.

I. INTRODUCTION

The background correlation function (cavity distribu-
tion function) y(12) as well as the bridge function B(12)
provide a very convenient mathematical tool for the devel-
opment of efficient theories to deal with the structure and
thermodynamics of fluids. Actually, they play an essential
role in some perturbation and, especially, integral equation
theories. However, it has been proven difficult to tackle the
problem of computing such functions, either numerically or
analytically, even in the simplest case of hard sphere (HS)
fluids. In this regard, the pioneering work of Meeron and
Siegert,' reformulated in different ways, has led to several
approaches to determine y(r) for the HS system. Grundke
and Henderson? have proposed an interpolation formula
based on the knowledge of y(r) at r = 0 from thermodynam-
ics, and Labik et al.® and Torrie and Patey* have presented
the first computer simulation results for the background cor-
relation function of the hard sphere fluid. More recently,
Balance and Speedy’ performed molecular dynamic simula-
tions for the hard disk fluid. Nonetheless, computations of
y(12) for nonspherical fluids are scarce in the literature. To
our knowledge only Labik and Malijevsky® carried out simu-
lations for homonuclear hard diatomics (HOHD), and the
same authors proposed an analytical approach,® based on
the use of the virial coefficients for infinitely dilute mixtures
of an n-atomic fluid (solvent) and a 2n-atomic fluid (sol-
ute). Their work, however, is focused on the determination
of radial slices through y(12) and therefore their method
does not seem suitable for an efficient computation of y(12)
at arbitrary interparticle orientations since the whole proce-
dure must be repeated every time a new intermolecular con-
figuration (even keeping the center-to-center distance con-
stant) is required. In this sense, the use of the spherical
harmonic expansion seems promising due to the expected
regular behavior of y(12) which implies that the knowledge
of the coefficients y,,,, (#) immediately furnishes the values
of y(12) for any given interparticle orientation by a simple
numerical algorithm (series resummation).

Only little is known about the bridge function, and most
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of it for the hard sphere fluid. This function can be defined by
means of a diagrammatic analysis’ and, since several of its
graphs can be computed for hard spheres, it is possible to
determine in this case the behavior of B(r) in the low density
region.® On the other hand, at higher densities it can be com-
puted via the Verlet and Weis parametrization of g(r).>!°
Recently, Malijevsky and Labik'' proposed an empirical
formula based on the Percus—Yevick (PY) approximation
whose results are consistent with computer simulation data
for thermodynamic and structural properties. When consid-
ering nonspherical particles, the problem becomes even
more involved. We are not aware of any work that have dealt
with the determination of B(12) in this sort of models; the
difficulties in the computation of the background correlation
function have hindered so far any attempt to extend the pro-
cedures available for the hard sphere fluid to the HOHD
fluid. The bridge function in this fluids is, nevertheless, an
interesting quantity since it can be used to extend some inte-
gral equation theories—in particular, the well known refer-
ence hypernetted chain equation'> (RHNC)—to non-
spherical particles. Moreover, one may expect for this
function a very regular behavior so that the effects of the
anisotropy should be minimized. This would yield, as an
immediate consequence, a rapid convergence in a spherical
harmonic expansion.

In this work we present some results for the coefficients
of the expansion of the background correlation function in
spherical harmonics for the HOHD fluid, computed by
means of a modification due to us of the method proposed by
Labik er al> We also introduce here some results for the
bridge function. The method, fully explained in Sec. 1I, is
based upon the relationship between the direct correlation
and the bridge functions

¢(12) = h(12) — Infy(12)] — B(12), (1)

where A(12) = g(12) — 1 is the total correlation function.
This expression can be written in terms of the series function,
S(12) = A(12) — ¢(12), which is convenient from a nu-
merical standpoint
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B(12) = S(12) — In[y(12)]. (2)

S(12) can be computed from the total correlation function
h(12) via the Ornstein—Zernike (OZ) equation

h(12) = c(12) +(4L)fc(13)h(32)d3. (3)
T

The fast convergence in the spherical harmonic expansions
of y(12) and S(12) is the main characteristic that makes
feasible this approach. The computation of the bridge func-
tion utilizing the aforementioned procedure will enable us to
analyze from a new perspective widely used approximations
to the solution of the OZ equation such as the Percus—Yevick
and the hypernetted chain (HNC) equations.

Il. THE y(12) AND B(12) FUNCTIONS FROM MC
SIMULATION

The computational scheme implies two different but
closely related aspects as one may see in Eq. (2). First, the
spherical harmonic coefficients of the y(12) function in a
hard diatomic fluid can only be determined with some reli-
ability using Monte Carlo (MC) simulation (or some theo-
retically supported approximation which, in the end, will
have to be tested against MC data). At the same time one
must compute the S(12) function (or its spherical harmonic
coefficients), either from some theoretical approach or using
MC data for the pair distribution function g(12). Once these
two steps have been accomplished, the determination of
B(12) [or more precisely the coefficients B, (r)] is
straightforward. In what follows we will explore the differ-
ent possibilities available to tackle the two main problems we
have mentioned, both in the simulation and in the theoretical
approach.

A. MC simulation of the background correlation
function y(12)

In this subsection we shall recall the main features of the
background function theory, within the Meeron and Siegert
approach.! The numerical method sketched below, essen-
tially devised by Labik et al.,* has been modified by us so that
it yields the spherical harmonic coefficients. It is worth no-
ticing that the main advantage in this procedure lies in the
considerable saving of computing time, its principal short-
coming being its restriction to hard core potentials and that
the accuracy noticeably decreases with distance and density.
On the contrary, the Torrie and Patey procedure,* even
though the computations can be extremely tedious, is not
constrained to hard core interactions. Since as yet we are
only interested in the hard diatomic fluid, the Labik and
Malijevsky procedure seems more adequate for low and me-
dium densities. An alternative route should be necessary if
some additional contributions—e.g., electrostatic interac-
tions—were to be added to the hard core term.

The background correlation function y(12) is defined
by

y(12) = exp[Bu(12)]g(12) 4

from which, using the definition of g(12) and assuming the
potential Uy (12- - -N) to be pairwise additive, one may get?

2
y1) =~ [+ [ [T e [[e@D
z,

J>1 i>2

X [ e(ip)d3:--dN, (5)

i>j>2

Z~=J"'J I etid1--aN,
i>j»1

where e(ij) = exp[ — Bu(ij) ]. In order to get some phys-
ical insight from Eq. (5), Meeron and Siegert introduced the
concept of cavity when dealing with the y(12) function: a
domain within a fluid where no particle is present. This de-
finition implies that whereas there is no interaction between
two cavities, cavities and molecules can not overlap in a hard
spheres or hard diatomics fluid. The probability of finding
two of such cavities at positions r, and r,, and orientations
o, and o,, respectively, in a system of N-2 hard diatomics is
given by'?

ng?(12)

= (szf II e(1)]] e(ZJ) H e(ij)d3'--dN)/

i>2 i>2

([f 11 eapas--an) )
i>j>2

an expression closely related to Eq. (5); hence the name
“cavity distribution function” for the y(12). In fact, Eq. (6),
after some manipulations, leads to the following relation:

y(12) = VX(Zy_/Zy)n$P (12). (7
From elementary statistical thermodynamics one may get'?

BAp= —In(Zy/Zy V) (8)
from which Eq. (6) in the thermodynamic limit yields

y(12) = exp(2BAu)n{y (12), 9

where Au is the excess chemical potential of the HOHD
fluid. From this result Hoover and Poirier,’* and later
Meeron and Siegert! showed that

lim y(rw,,@,)

T2—

= exp[BAul, if and only if », = w,. (10)

This expression plays a central role in the development of the
computer simulation method used to calculate y(12). Fol-
lowing Labik et al. [Eq. (5) in Ref. 3]

lim y(7,,0,0)

f fHe(ZJ) e(ij)d3---dN.
j>2 l>_l>2

In the above expression it has been taken into account that
for hard core potentials e(ij)? = e(ij), since e(ij) is either
zero or unity. By using Egs. (5), (10), and (11) the follow-
ing function may be defined:

(11

P(ry, @, @,) = exp(

— BAp)Yy(ry;, @4, 0,) (12)

which is equivalent to
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P(ry,, 0, @2,)
f fH eii) I[ eGi)d3—-dN.  (13)
Z i>2 l>j>l

From this expression one may conclude that P(r,,, @,, @,)
represents the probability of inserting a new cavity at r, and
orientation w, (cavity 1) in a sample composed of N-1 parti-
cles and a cavity whose coordinates are (r,, @,) (cavity 2).
Obviously, the new cavity can not be inserted if it overlaps
any molecule in the sample. This procedure bypasses the
difficulty—unavoidable in the Torrie and Patey proce-
dure—in simulating a sample with two cavities plus N-2 par-
ticles. Actually, one needs only to consider the sample con-
figurations of an N-particle system and compute the
probability of inserting a single cavity 1; any of the N parti-
cles can be regarded as the cavity 2 since a system formed by
N nonoverlapping particles is completely equivalent to N-1
particles plus a cavity. This implies that a standard Monte
Carlo programme for hard core particles can be used to gen-
erate the configurations, thus allowing a considerable saving
of computing time and improving the reliability of the re-
sults, as N equivalent attempts of insertion can be per-
formed.

The spherical harmonic coefficients can be obtained
during the insertion procedure once the probability for a
given interparticle configuration—described by
(ry,5,@,,0,)—has been computed. The method consists sim-
ply in projecting the P(r,,, w,, ,) function onto the appro-
priate products of spherical harmonics Y,,, (@,) Y (®,)
and compute the angular average over w, and »,. Numeri-
cally, this reduces to chose a random orientation at a given
center to center distance, r,,— the orientation of r,, being
randomly selected as well—and perform the insertion at-
tempt. This procedure must be carried out for every mole-
cule and sample configuration. In this way the spherical har-
monic coefficients of the P(r,,, ®,, ®,) can be expressed as

1 o
Piim (ri2) = N @) ,@,)

X Yim (1) Y5, (@), (14)

where p/ (@] ,w} ) is a step function whose value is either
zero or unity depending on whether the attempt of insertion
was successful or not, and the index i stands for the ith at-
tempt of insertion for the state j; NV, is the number of configu-
rations and n, the number of tentatives—at least one per
particle. Using Eq. (12) we get the following formula for the
Yum (r) coeflicients

ykIm zp’(rlba)/l 9“)12 )

2 Py
X Yy, (a/,,.m-n(afz,.). (15)

The excess chemical potential has been calculated using the
Nezbeda and Boublik equation of state'’

Bp _ 1+ Ba—2)n+ (3e®—3a+ )y’ — o’y
P (1—m?

(16)

with
a={*+1DU*+2)/2+31*~1%), amn
7= (7/6)pd>(1 + 31*/2 —1%3/2),

where / * = [ /d, with I being the center-to-center separation
of the atomic sites in the diatomic molecules and d is the
atomic diameter. Integrating Eq. (16) the final expression
for the excess chemical potential reduces to

2 _ _ 2
ﬁAy=(a 3a)ny — 3ag

(1—1)?

—U—a)m(—m+22 1. (18)
p

This relation was found to be accurate enough to our pur-

poses as we shall see in Sec. IV.

Once the y,,,, (r) coefficients have been computed, the
full y(12) function must be determined by resummation of
the spherical harmonic expansion, so that Eq. (2) can be
used to obtain B(12). One easily may get

Y(rpw,w,) = 4 z Yiim (112) Yo (@) Y (@) (19)

kim
for any given set (7,5, @,, ®,). On the contrary, the Labik
and Malijevsky original method? based on the determination
of the full y(12) for given configurations, would imply the
use of interpolation procedures.

B. Calculation of the series function $(12)

In order to obtain S(12) from the simulated spherical
harmonic coefficients of g(12), the OZ equation must be
inverted, using #(12) as the input function. Previous
works'"'® suggest that the inversion of the OZ equation
from simulation data is numerically unreliable since it tends
to enhance inaccuracies when S(12) is expressed in terms of
h(12). Moreover, the values of #(12)—or alternatively the
coefficients 4,,,, (r)—are obtained in the simulation within a
limited range of » determined by the size of the unit cell,
namely 7 <R,,, where R,, = L /2 (L being the side of the
cell) and, since the inversion of the OZ is performed in the
Fourier space, the knowledge of 4(r,,,w,,®,) for larger val-
ues of ,, would be required. Therefore, we use a procedure
found in the literature—although in a different context'’—
to bypass similar difficulties. As a first step one should re-
write the OZ equation in terms of S(12)

S(12) = (%)f [S(13) + c(13)]c(32)d 3 (20)
T

The OZ equation expressed in this way is more suitable for
numerical computations,'? especially when dealing with
nonspherical problems due to the rapid convergence of the
¢(12) and S(12) expansions. If we denote by 4 M<(12) the
simulation results for the total correlation function, we can
set up the following closure relation for Eq. (20):

c(12) = AMS(12) — S(12) if r<R,,,
c(12) =0 if r>R

(21a)
(21b)

m?

where obviously Eq. (21a) is exact within the statistical un-
certainties of the simulation and Eq. (21b) is an approxima-
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tion. Clearly, relation (21) resembles the PY approximation
but can be regarded as quasiexact since R,,, ~ 40 (o being the
atomic diameter) for a sample of 256 particles at liquid den-
sities, distance for which any hard core potential would ren-
der a vanishing ¢(12).

Now, the problem of computing the series function
S(12) reduces to solving Eqs. (20) and (21) in terms of the
spherical harmonic coefficients. This can be handled by
means of a procedure devised by Lado,'> which we briefly
outline below.

In Eq. (20) we may expand both S(12) and c(12) by
which, using the orthogonality of the spherical harmonics,
one gets

Siim (r12) = (— l)mp'zflsklm (r13) + Cram (113) ]
py

X Cum (F32)drs. (22)

This expression is equivalent to a matrix equation where
(kl) are the element index, and the dimensionality of the
matrix is given by the maximum value of m to be considered.
Obviously, the values of k and / must be compatible with m,
i.e., k, I>m. Thus, by means of Fourier transforms (below
denoted by a tilde) and Eq. (22), the S,im (k) can be ex-
pressed as

kS,, (k) = (= D)"p{kI — ( — 1)"p[kE, (k) ]}~

X [k, (k) ]2 (23)
The computation of these Fourier transforms is by no means
straightforward. We have used an efficient algorithm pro-
posed by Lado which can be found fully explained in Ref. 12.

In this way, once an initial solution for the S,,, (7) coef-
ficients is available (e.g., the hard spheres one), after inser-
tion in Egs. (21) one can get ¢,y (7). These coefficients are
Fourier transformed as indicated above, and a new set of
Syum () coefficients is obtained from Eq. (23), tranforming
back to real space. In order to assure convergence it is advis-
able the utilization of a Broyles mixing iterates method'® at
high densities. An adequate convergence criterion is the one
suggested by Lado'? 7|Sy,, () — Sim ()| <1072 [usually
the fulfillment by Syo,(7) implies the convergence of the
whole set of harmonic coefficients].

C. Computation of the bridge function coefficients

In Secs. II A and II B we have explained the procedures
to calculate the y(12) and S(12)functions from MC data.
Now one may easily perform the computation of B,,, ()
from Eq. (2) expressed in terms of spherical harmonic coef-
ficients

B/lyv(r)
=S,1,w(") - (111[477';)%1»1 (N Yim (@) Y55, (wz)]
X Y, (@0,) Y5 (@), (24)

where (---) denotes angular average over orientations w,
and w,, and all the terms on the right-hand side of Eq. (24)
should have been previously computed. It must be men-
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tioned that in the region r>o + 1 yi,, (7) = g (7), and
therefore it is advisable the use of the latter coefficients be-
cause of their better statistics. In this equation, the presence
of the logarithmic term minimizes the inaccuracies in y(12)
which highly increase with density.

lil. SOME THEORETICAL APPROACHES

With regard to theoretical approximations to the bridge
function, we should mention the Percus—Yevick (PY) and
the hypperneted chain (HNC). These are widely used clo-
sure relations in the context of the solution of the OZ equa-
tion. One of them, the HNC in fact reduces to assume the
bridge function to be identically zero for all the values of 7.
This approximation is known to yield rather good results
when dealing with the long range properties of fluids. On the
other hand, the PY approximation, whose efficiency for
short range potentials is well established, assumes a simple
relation between y(12) and S(12), such as

(12) = 1 + S(12) (25)

which, in turn, gives the following expression for the bridge
function:

B(12) =85(12) —In[1 + S(12)]. (26)

When Eq. (25) is expressed in terms of g(12) and S(12) one
gets the usual PY closure relation for g(12)

g(12) = [1+ §(12) Jexp[ — Bu(12)] (27)

or
c(12) = [1 + S(12) {exp[ — Bu(12)] — 1}  (28)

in terms of ¢(12). Thus, it is possible to solve the OZ equa-
tion {Eq. (20) ] to obtain $(12) and insert this solution into
Eq. (26); this would lead to the Percus—Yevick approxima-
tion for the bridge function. In order to solve the OZ equa-
tion with the PY closure relation for the hard diatomic fluid,
the procedure sketched in Sec. II B has been applied. The
only difference lies in the fact that now the relation between
¢(12) and S(12) is nonlinear; thereby the projection of
c(12) [Eq. (28)] onto Y, (w,) : Y;; (w,) must be explicitly
computed through

Cam (7) =4—17”[1 +5(12) {exp[ — Bu(12)] — 1}

X Y (@01) Y}, (0,)dw, do,. (29)

Note that in the case of Eq. (21) the projection is trivial. A
Broyles method'® is required to assure a satisfactory rate of
convergence in the S, (r) coefficients.

IV. NUMERICAL RESULTS

We have carried out Monte Carlo simulations for a hard
diatomic fluid with elongation / = 0.60 at three different
densities po® = 0.2, 0.3, and 0.4352 using 256 particles. In
what follows and in the figures we will use the convention
po® = p* and r/o = r* as usual. The averages in the simula-
tion were computed every 1500 sample configurations and
the total number of configurations ranged from 2.5 X 108 to
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4.3 10%, depending on density. From these simulations we
first obtained the g, (r) coeflicients, which we do not in-
clude in this work since they are well known quantities for
this particular model.'® The same configurations were used
to compute the y,,,, (r); following the method explained in
the previous section we have carried out two insertion at-
tempts per sample particle at the lowest density, three at-
tempts at p*=0.3 and six at the highest density,
p* = 0.4352. Since the quality of the results depends upon
the probability of cavity insertion, simulations for high den-
sities are far more tedious than those for low ones. In prac-
tice, this insertion procedure becomes useless for densities
higher than those considered here since the computing time
rises exponentially with the density.

A check of our results is shown in Fig. 1, where the first
two coefficients yy,,(r) (black and white triangles) at
p* = 0.4352 are represented vs the results obtained for the
&um (1) (solid lines). It must be recalled that, since we are
dealing with a homonuclear hard diatomic fluid, g, (7)

= P (r) for r>l + 0. One may immediately see from the

figure that lines and dots in this region show a remarkable
agreement, at least within the inaccuracies of y(12) in the
MC simulation.

In Fig. 2, the most significant coefficients of the y(12)
spherical harmonic expansion are presented. First, it should
be noticed the sharp decrease in the magnitude of the y,,,, (7)
coefficients as the k/ indexes increase. This obviously implies
a fast convergence of the expansion. Besides, the r depen-
dence of all the coefficients shows an outstanding regular
behavior, and since they reach the largest values in the vicini-
ty of r = 0, one may conclude that this is the zone where the
angular dependence of y(12) is more significant. A curious
feature one can appreciate in Fig. 2 is that the angular depen-
dence is determined mainly by the coefficients y,,, (r) (000,
22m, 44m) which show a quite symmetric distribution with
regard to the y,,,, (r) = 0 axis.

In order to confirm the rapid convergence of the y(12)
expansion, in Fig. 3 we present the values of this function at
p*=10.3 computed for several intermolecular configura-

FIG. 1. First coefficients of the spherical harmonic expansion of the g(12)
(solid lines) and the y(12) function (triangles) computed at p* = 0.4352.
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FIG. 2. Most significant coefficients of the y(12) expansion at p* = 0.4352.
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FIG. 3. The function In[y(12) ] computed for several intermolecular con-
figurations at p* = 0.3, namely, end-to-end (e—¢), T-shaped (T), parallel
( =), and crossed (X ) in this work (triangles and squares) and in Ref. 3.
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tions (end-to-end, T-shaped, parallel, and crossed) via re-
summation of the expansion (up to y,,s), compared with
those obtained directly by Labik et al.> The agreement
between both results is clear and needs no further explana-
tion. The examination of Figs. 2 and 3 guarantees that an
accurate computation of the value of y(r,,, w,, @,) at any
given intermolecular configuration is attainable by resum-
mation of the spherical harmonic expansion. This is an im-
portant conclusion since it is one of the properties that en-
able us the determination of the bridge function via Eq. (24).

In Fig. 4 one may observe the change induced in the
Yim (r) when density is increased, both in the radial term
and in the angular coefficient (»,4,). The density depen-
dence exhibited by both coefficients is easily understood if
one recalls Eq. (12), where the p* dependence in Ay is en-
hanced by the exponential. Moreover, the angular depen-
dence of P(r,,, @, ®,) is also augmented as density raises. In
fact, at very high densities, P(0,0,,0;) = 1, ifw, is extremely
close to w;, and vanishes otherwise.

The S,,,, () coefficients of the series function were ob-
tained by means of the procedure described in Sec. I1 B using
MC data for hy,,, (#) = gum (r) — 1. The number of itera-
tions required by our procedure ranges from 10 up to 40 (at

10° T | | T
»_ a)
104 L. . p‘-0.1.35 B
. o P"=0.300
° a p'=0.200
103 * —
L
;‘ [ ]
= 102__ . ]
p °
>§ “o0 .
° . . .
‘orAAAAAA oo.o
a s A Z g °
e R ENTY
| | 1 |
| T |
e ©
350 - b}
hd .
250 — e p =0435 -
o p*=0300
.
S150 |- * =
>
[ ]
50— o —]
° [
tooooooooo89000000004
-50 | | | ]
00 0.4 08 12 1.6 20

FIG. 4. The density dependence of the yoo(7) and y,4,(7). Note that a log
scale is used in (a).
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p* =0.4532) and the convergence was achieved without
special difficulties. We also solved the PY equation [Eqs.
(22) and (28) ]. The angular averaging implied in Eq. (29)
was performed using the procedure suggested by Lado,'?
based on the transformation of the average into an integral
suitable for the use of gaussian integration. The results are
very sensitive to the number of points (in this case 30 points
per angular variable sufficed). When inverting the OZ equa-
tion and solving the PY equation the Fourier transforms
were performed using 512 points in 7, with a spacing
Ar = 0.020. The use of a larger number of points or a smaller
grid does not alter significantly the results. In both cases the
number of Sy, (7) coefficients computed is 15 (k, I<4). In
this regard, Lado'? has shown that even the use of five coeffi-
cients (&, I<2) suffices in order to obtain an adequate repre-
sentation of the function.

The most significant coefficients are shown in Fig. 5 for
p* =0.4352, where the symbols denote results obtained
from MC data and lines indicate PY results. It is to be no-
ticed the qualitative agreement between MC and PY results,
both in the radial coefficient Sy, (7) and in the angular pro-
jections S,,,, (#). Conversely, if one compares the MC coeffi-
cients for y(12) (see Fig. 2) with those obtained for $(12) in

A/ LY
1
- /
03 F— 7, ° :200 ]
© 2220
/ a Sgp MC)
e s S
-09E ] ] ] ] ] |
00 05 10 15 20 25 3.0 35

I"

FIG. 5. Leading coefficients in the expansion of S(12) at p* = 0.4352.
Lines stand for the results of the PY approximation and symbols represent
results obtained from MC data.
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the PY approximation [in which y(12) =1 4 §(12) and
thus Sy, (#) = Yu, (r) if (kim) 5 (000) ], the discrepancies
are considerable.

Once the y,,,, (r) and S}, (r) coefficients have been de-
termined the computation of B,,,, (r) is straightforward via
Eq. (24).

The main results for the B,,,, (#) coefficients are collect-
ed in Figs. 6 and 7. In Fig. 6 we have shown the density
dependence of the radial coefficient in the same way we did
in Fig. 4 with the projections of y(12). The extreme density
dependence of yyu(7) is somehow damped by the logarithm
in Eq. (24), in such a way that even though there is a re-
markable increase in By, (#) with density it does not affect
the order of magnitude, as it happens with oo (7). This ef-
fect can also be observed in the angular coefficients [Fig.
6(b)], so that S, (r) are much less sensitive to density
increments that the y,,,, (7).

Finally, in Fig. 7 the most representative coefficients at
p* = 0.4352 are depicted. Asin Fig. 5, lines of different type
represent PY approximation and symbols denote the results
coming from MC data. With regard to our MC results it has
to be stressed once more the rather regular behavior of the
coefficients, as well as the rapid convergency of the B(12)
expansion. We are, however, aware of an evident deviation
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FIG. 6. The density dependence of the coefficients By, (7) and B,po(7).
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FIG. 7. Leading coefficients in the expansion of B(12) at p* = 0.4352.
Lines stand for the results of the PY approximation and symbols represent
results obtained from MC data.

from this regular behavior in the region o < 7 < ¢ + /, which
is not present in the PY results. To our opinion this effect
may stem from the statistical uncertainties in the MC simu-
lation of y(12) which render the y,,,, (7) coefficients almost
meaningless for 7> . These coefficients cannot be neglected
in order to get an accurate determination of In[y(12) ] in Eq.
(24) and, subsequently, this could give rise to the aforemen-
tioned deviations. In this regard, a similar phenomenon is
found when the g(12) is rebuilt from its spherical harmonic
expansion in the same region.'® Finally, it should be men-
tioned that all the coefficients are relatively short ranged in »
[shorter than the g,,,, ()], as it could be expected, B(12)
being a sum of convolutions of £(12).”

Again the PY results show a qualitative agreement with
simulation data. Perhaps the most meaningful discrepancy
appears in the value of B,y (7) at r = 0. This agreement is an
interesting feature, in particular if one realizes that an ap-
proximation such as the HNC, simply neglects the contribu-
tion of all the B,,, (7) coefficients.

The qualitative agreement between PY and MC results,
especially as far as the B(12) function is concerned, may be
of interest in order to extend fitting procedures, such as the
one by Verlet and Weis,” so that the bridge function could be
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determined in an easy and straightforward way for hard di-
atomic fluids.
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