Extension of the optimized RHNC equation to multicomponent liquids
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We have extended the optimized reference-hypernetted chain formalism to multicomponent
liquids. The reference system is constructed from a mixed hard spheres fluid with additive
diameters whose structural and thermodynamic properties have been conveniently
parametrized. The theory is applied to binary liquid mixtures interacting through a repulsive
Lennard-Jones potential as well as the complete Lennard-Jones potential; calculated results are
in excellent agreement with those of numerical simulations.

L. INTRODUCTION

Knowledge of the pair distribution function (PDF)
g(r) is the key theoretical problem in acquiring information
about the thermodynamic and structural properties of sim-
ple liquids in equilibrium whose molecular interactions can
be described by an effective, spherically symmetric pair po-
tential #(r)."® For an n-component liquid mixture,
n(n + 1)/2 different pair distribution functons g, (r) are
needed for the same goal. These are obtained from the gener-
alized Ornstein—Zernike (OZ) equations

h,(r)=c,,(r)+ i Py fdr’cw(|r—r’|)hw ),
y=1
(N

which introduce the corresponding direct correlation func-
tions (DCF) c,, (7); here, h,, =g,, — 1 and p, =px,,
with p and x,, the total number density and partial molar
fraction of species ¥, respectively. A second, closure relation
is then needed to complete the specification of these func-
tions. This was obtained some time ago® by a diagrammatical
analysis of the density expansions of the PDF and DCF,
which yields the exact, formal relations

8, (r) =exp[ — B¢, (r) +s5,(r)+b,, (], (2)
where s,, (r) = h,,(r) —c,,(r) and f=1/kgz T. While
this analysis produces a definition of the so-called “bridge”
functions b, () in terms of a density expansion of highly
connected bridge or “elementary” diagrams, the expansion
cannot be summed and the b,, () remain essentially un-
known. This has given rise to a number of approximate clo-
sures, usually based on the summation of a subset of dia-
grams of the ¢, (7), such as the Percus—Yevick* (PY) and
hypernetted-chain® (HNC) approximations. Despite omit-
ting entire subclasses of diagrams [e.g., b,,(r) =0 for
HNC], these closures produce reasonable results at low to
medium densities.’ They share, however, internal thermo-
dynamic inconsistencies, such as different equations of state
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obtained from the virial and compressibility routes. In the
past, efforts to avoid these limitations have often been based
on perturbation theories,” which recognize that in the high
density and temperature region of the fluid phase diagram
the fluid microscopic structure is dominated by packing ef-
fects determined by the short-range repulsive part of the in-
teraction potential. The hard sphere fluid being the simplest
model for such effects, it is usually chosen as the reference
system in such perturbation theories for both simple fluids
and, with additive diameters, for fluid mixtures; in addition,
its structural®S and thermodynamic’ properties are known
through analytical expressions of reasonable accuracy. The
success of these theories depends on the criteria used to se-
lect the reference system parameters and is generally limited
to short-range repulsive potentials and conditions of high
density and temperature.?

The development in recent years of efficient algo-
rithms®'° for the solution of OZ-based integral equations
has encouraged new efforts in both the application of and
improvements in this approach for simple liquids and their
mixtures. Rogers and Young'' used the old idea of a “univer-
sal” closure (independent of the pair potential characteris-
tics) constructed from a combination of the PY and HNC
approximations such as to assure pressure consistency in the
computed results. This approximation has been applied to
mixtures of repulsive Lennard-Jones atoms'?; a “soft core”
mean spherical approximation-HNC variant of the same ap-
proach has been used to study Lennard-Jones mixtures.'?
The parameter used to combine the two closures depends on
the thermodynamic state being studied. In another ap-
proach, leading to the optimized reference-hypernetted
chain (RHNC) equation,’*!” the bridge function b(r) is
modeled by the known b,(r) of a short-range potential
#o(7). As with the perturbation theories, the analytic para-
metrization of the various correlation functions of the hard
sphere fluid'®*-?° yields a convenient representation of b,(r)
and makes this a useful reference system. The disposable
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reference system parameters are selected by minimizing the
Helmbholtz free energy, which leads to an important increase
in the internal thermodynamic consistency of the theory.
This approximation yields excellent results for simple li-
quids with quite diverse potentials.'”*! Recently, the hy-
pothesis of ‘“universality” of the bridge function has been
questioned; at large separations, b(r) should go as
— [ g(r) — 1]2/2, which gives rise to a dependence on the
particular potential being studied.”? Furthermore, the hy-
pothesis appears to have no foundation in one-dimensional
systems.?

In this work, we apply the optimized RHNC method to
binary fluid mixtures described by a repulsive Lennard-
Jones (RLJ) potential and the full Lennard-Jones (LJ) po-
tential. In Sec. II, we develop an expression for the Helm-
holtz free energy of mixtures as a functional of the pair
correlation functions. An extremal condition on this func-
tional yields conditions for the selection of the disposable
parameters of the reference system, which is here chosen to
be a mixture of additive hard spheres. The bridge functions
for the hard sphere mixture are obtained in Sec. III using a
parametrization of the correlation functions of this model.>¢
Comments on the numerical algorithm used to solve the cou-
pled integral equations are presented in Sec. I'V, with empha-
sis on the modification of Gillan’s® method that we have
used. Finally, we present in Sec. V the computed results ob-
tained for the liquid mixtures noted above. They are in excel-
lent agreement with simulation results for both structure
and thermodynamics.

Il. THEORY

The Helmholtz free energy of a fluid mixture interacting
through pair potentials 4, (#) can be obtained by an exten-
sion of Lado’s'*!® derivation for pure fluids, based on a
knowledge of the structural and thermodynamical proper-
ties of a reference fluid with potentials ¢° (r). Tothisend, it
is convenient to describe the transition from reference sys-
tem to real system by parametrizing the potentials in the
form

b, (PA) = 80, (r) + 1A, (1), (3)
A¢vu(r)=¢vy(r)_ 3u(r)' (4)

The difference in excess free energy A between the real sys-
tem with potentials ¢, (#,1) and the reference system with
#.,, (r,0) is then given by

A—A°=(4,—A%) + (4, —A3) + MM, (5)
where
BAIN = —ip T x.%, jdr[;h 2 (1) + hy, (7)
— 8w (:)lnyv,,(r)] (6)
BA/N = — (2p)“'JdW(2#)3

X [In Det H(k) — Tr H(k)] . @)

In these expressions, y,, (r) = g,, (r) exp[Bd,,(r)], and
Det and Tr denote the matrix determinant and trace opera-
tions, respectively, while the elements of the matrix H(k)

are proportional to the Fourier transforms of the total corre-
lation functions 4, (),

H,, (k)= (p,p,) "k, k), (8)
}-z,,u (k) = fdr h,, (r) exp(iker) . (9)

The reference system quantities 4, and 4, are defined as in
Eqgs. (6) and (7) with the corresponding reference correla-
tion functions. For AA4,, we obtain the exact expression

1
BAA/N = _—;—pr,,xp '[drfo dA b, (rA)
v

% 8., (rA)
aA
in terms of the “charging” parameter A. The RHNC approx-
imation'*'>?* is based on the assumption that the bridge
functions are largely insensitive to the change in potential in
going from A = 0to A = 1, so that Eq. (10) can be approxi-
mately evaluated as

BAA;/N ~ ———p zx x, fdrb‘&,,(r)

(10)

X[gvy(r)_gvp(r)]’ (11)

Equation (5) thus makes 4 a functional of the g, (#) and
b?, (r). A variation of these then produces the change

884 /N = _ip LR J.dr[hv,,(r)
—Iny,, (r) + b5
+—p va xﬂjdr[gv”(r)

2

—8%,(r)]6b6%,(r). (12)

This variation becomes extremal if the PDF satisfy the clo-
sure (2) with the reference system bridge functions replac-
ing the exact b,,, (), which constitutes the RHNC approxi-
mation, and if i m addition the condition

Y x,x, fdr[gvy(r) -8, (n)sbs, (n=0 (13)
i
is also satisfied. Variations in the bridge functions 59, ()

follow from variations in the set of reference system distance
and energy parameters {d,€}, so that

( 3b° b°
6b?, = * 1 6d *_\be, . 14
w(7) E(adk) "J@(ae,)e’ (1

Using Eq. (14) in Eq. (13) then leads to the conditions

(r) —cvy, (r)]agvy (r)

abs,
Ik Z'x x fdr[gvp(r) g?/p( )] ad(r) Ol
k
(15a)
w (P
JI Zx x fdr[gvp(r) gV/L( )] 6 =0
i
(15b)

for arbitrary variations of the {d,e}; these conditions then
serve as constraints that determine the values of these pa-
rameters to be used in a given calculation. It turns out
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further that Eqs. (15) lead to a notable increase in the inter-
nal thermodynamic consistency of the RHNC method.'® We
find by direct differentiation that

3( BA /N)
3
o

1
= —Zp%xvx”

Bp/p—1=

X fdrg,,# (P8, (r) — %p S (6
k

and similarly
B( BA /N)
B

=ip S x,x, fdrgvﬂ(r)ﬁ¢v#(r) —-l—p I,
2 = 24
(17)

which reduce to the correct forms when conditions (15) are
imposed. These constraints though do not guarantee pres-
sure consistency between the virial equation of state written
above and that obtained from the compressibility,

(pkyTy) ! —_-%%l =1l-pYyxx, fdrcvﬂ(r) .
v

BU/N =

(18)
In practice, however, this inconsistency is greatly lessened
compared to the PY and HNC approximations.'’
We note that for hard core reference systems, which
lack an energy scale, conditions Eq. (15b) are trivially satis-
fied.

llIl. CORRELATION FUNCTIONS OF ADDITIVE HARD
SPHERE MIXTURES

Verlet and Weis'® (VW) formulated a parametrization
of the pure hard sphere PDF based on a correction of the PY
result that incorporates the Carnahan-Starling®® empirical
equation of state. The analytic solution of the PY equation
for additive hard sphere mixtures®® and the empirical mix-
tures equation of state proposed by Mansoori et al.’
(MCSL) permit an extension of the VW parametrization for
such systems.>® One defines first the packing fraction

n=%2md& (19)

for hard spheres of diameter d,, and the effective sphere
diametersd * =d,, (1 — 5/16)'/, which bring the oscilla-
tions of the g,, (r,{d *},7*) into coincidence with simula-
tion results. The diminished values of the resulting g,,, near
contact are then corrected with a short-range function, so
that

8 (1) =g (r{d*}m*) + Ag,, (1), r>d,,, (20)
where
Ag,, (ry=(4,,/ryexp[ —m,, (r—d, )]
Xcos[m,,(r—d,)], r>d, . (21)
The parameters 4,, are chosen to reproduce the contact
values generated by a combination of the PY result and that
of scaled particle theory?’ (SPT),

8.,.(d,) =1g0,(d,,) +38,(d,,), (22)

which assures that the virial equation of state reproduces the
MCSL form. The parameters m,,, are determined from the
formula

m,, di, =KA, /[n*g d, {d*}n*)] . 23)

With K = 24 we recover the parametrization proposed by
Lee and Levesque® (LL), which yields reasonable agree-
ment between the structure factors of the true hard sphere
mixture and the PY result. In the present calculations, we
have obtained K numerically by requiring that the computed
isothermal compressibility agrees with the MCSL value,

pksTyr = (pkgTYr)mcsL - (24)
This ensures that the extension to mixtures of the VW para-
metrization is thermodynamically consistent.

In Fig. 1 we show the pair distribution functions for a
binary hard sphere mixture with d,,/d,, = 0.3 at n = 0.49,
as obtained from the PY equation, the present VW parame-
trization, and computer simulation.® On the scale of this fig-
ure, our results agree with those of the LL parametrization;
differences between the two versions only appear in the
¢,,, (k) as k goes to zero, a consequence of the different com-
pressibility choices. With the fitted g,,, (#) we can compute
the corresponding s,,, () through the OZ equation.

Henderson and Grundke® (HG) have fitted the func-

6.0 %

gvu( r)

0.0 | ] 1
0 0.5 1.0 1.5 20

I'/dzz

FIG. 1. Pair distribution function of an equimolar additive hard sphere mix-
ture with d,,/d,, = 0.3 and 7 = 0.49: - - -MC (Ref. 5),—VW, and - - -PY.
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tions In[ y,, ()] in the overlap region with a third order
polynomial,

3
In[y,N]= 3 allrk, r<d,. (25)
k=0
To determine the coefficients, they generalized for mixtures
some theorems and thermodynamic relations which the
., (r) must satisfy:

In[ y,,(r<a,)] =Bu,, d,<d,, (26)
ﬂa ln [y’Vl-l (r<av'u )] - _ﬁap —_— 1, dw <dﬂl-‘ L
dp T dp,

(27)

din[ y,, (N)/drl,_., = —78,, ¥ p,d’, p,(d,),
y=1

(28)
yv‘u (dvu) =gv,u (dvp) b4 (29)
y\’//.t (dvu) =g1’/,u (dvy) * (30)

In these equations, a,, = (d,, —d,,)/2andu, is theexcess
chemical potential of species v. With this final fit, the bridge
functions are determined over the entire range of r through
b, (r)=In[y,,(r] —s,.(). 31
In Fig. 2, we show the hard spheres bridge functions
obtained from the PY equation and the present VW-HG

parametrization. One notes that the differences between the
two results are similar to those of the pure fluid. "

'va( r)

FIG. 2. Bridge functions of the hard sphere mixture of Fig. 1:—VW-HG
and - - - PY.
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IV. CALCULATION

The numerical solution is carried out for the functions
s,,, (r), with the closure relation (2) rewritten in the form

¢, (r) =exp[ — B, (r) +5,,(r)

+b2,(N] =5, —1 (32)
and the OZ equation expressed in Fourier transform repre-

sentation. In the matrix format of Egs. (8) and (9), this
reads

Stk) = [1-C)]~'Ck) — C(k), (33)
where I is the unit matrix. The » and & dependent functions
are evaluated on a grid of points r, = iAr and k; = iAk, re-

spectively, i = 1,...,N, with ArAk = 77/N. Numerical Four-
ier transforms are computed in the form

. N—1
flk) = (4nAr/k;) Y r; f(ry) sin(kry) , (34a)
j=1
N—1
fir)) =Ak/Q2m%r) Y k flk) sin(k;r;) (34b)

i=1
and are evaluated using the fast Fourier transform.?®

An iteration for the solution of the s, (7) begins with
use of the current value of these functions to obtain the
c,, (r) through Eq. (32). These are then transformed with
Eq. (34a) and inserted in the OZ equation (33) to yield
transforms of the new s,,, (#), which are then inverted with
Eq. (34b).

The straightforward application of this procedure is
known as Picard iteration and leads to very slow conver-
gence for the thermodynamic conditions characteristic of a
dense liquid. In recent years, new algorithms have been pro-
posed to accelerate the convergence of the iterative solu-
tion.*!° Gillan’s® method has proved to be highly effective
both for its rapid convergence and insensitivity to starting
conditions. It has been applied to a binary ionic mixture®®
and formally generalized to multicomponent systems.>* We
summarize below the basis of this method and note the mod-
ifications which have been used in this work.

Gillan proposed decomposing the functions s, (r;)
=s,,; into two parts, a first contribution that reflects the
general form of these functions and is expressed as a linear
combination of a small number of basis functions P',,, eval-
uated at M points / plus a second contribution for the fine
corrections As

vui?

risv;u' = Zav,un Pif;m + riAsv;u‘ ’ (35)

M

av;m = ‘Zl Qif;mrisv;u' ’ (36)
where the choice of basis functions P, and their conjugates
Q... used hereis identical to those of Gillan.® After a Picard
or elementary cycle, we obtain a new set of coefficients a;,,,,
using Eq. (36). On the basis of the difference vector
d = a — a’, a new coefficient vector a* is constructed using
the classical Newton—-Raphson (NR) technique, so that

d+J(a* —a) =0, (37)
which yields
a*=a—J 'd. (38)
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The elements of the Jacobian matrix J are given by

J day,,

vun,yom

_—_5V nyom ~
¥, 08, )
=5‘V" Um—. i"l _l——ﬂ)Pjam (39)
pn,y ;Q o (rj aswj k%
Iy N Osu {

i 35, Fogpe 9y

05,05

~ ~ } ,  (40)
&1 By | & Fpn Iy 0510

where the second sum in Eq. (40) is defined over all correla-
tion pairs that involve atomic species y and 0. Calculation of
the required derivatives is relatively straightforward using
the equations that define a Picard cycle described above

along with the matrix relation®

0s,, ~ i1
ek [(I+Hk)5§X(I+Hk) _551']‘/” ’

™ (41)
Ok

where the elements of the Kronecker delta matrix 5°% are
(8) 1 = ga-

The NR algorithm is used iteratively after each Picard
iteration until a converged set of coefficients a,,,, is obtained,
holding constant the fine correction, with convergence de-
fined by the parameter

) 172
61=[Z (Byun = Gipn) ] .
vun

With convergence of the a coefficients achieved, a new Pi-
card iteration is performed to obtain a new fine correction set
As,, (r) and the process is repeated until overall conver-
gence of the S, (1) is obtained, as measured by

(42)

(43

We note that including a multiplicative 7 factor in Eq.
(35) avoids the need of computing the correlation functions
at the origin, since these values are otherwise not used in the
iterative solution.

Finally, the derivatives of the bridge functions with re-
spect to the hard sphere diameters needed in Eq. (15a) have
been obtained by simple finite differences,

€, = max|r, (S, — Sy -

TABLE II. Computed thermodynamic properties of RLJ mixtures.

2253

TABLE 1. Parameters of the intermolecular potentials of mixtures used in
this work, in reduced units.

Potential €14 €12 €5, oy, 12 Oy
RLJ"? 1.0000 1.0000 1.0000 1.0000 1.2000 1.4000
LI(Ar/Kr)*! 1.0000 1.1807 1.3940 1.0000 1.0335 1.0670
LI (He/Xe)>? 0.3570 1.0000 7.7800 0.7230 0.9530 1.1740
LJ* 1.0000 1.0000 1.0000 10000 1.1250 1.2500

ab°,(r)

v [b?’,u(r!dyy + A)

ad,,

— %, (rd,, —0)]/(24) . (44)

V. RESULTS

The optimized RHNC equation has been solved nu-
merically for binary mixtures of atoms interacting through
the short-range RLJ and LJ potentials, with the parameters
listed in Table I, for a number of thermodynamic states. The
reference system for this calculation is a binary mixture of
hard spheres in parametrized form, as described in Sec. I1I.
All computations were carried out on a grid of ¥ =512
points with a spacing Ar = 0.015. Gillan’s method of NR
iterations was started from the PY solution for hard sphere
mixtures and was used with the same precautions as in the
pure fluid case.” Some 15 to 20 Picard cycles were needed in
each case to achieve a converged solution, defined here as €,
€, < 1073, The constraint Eqgs. (15a) defining the reference
systems were satisfied to an accuracy of 10~ greater preci-
sion falls within the numerical uncertainties of the calcula-
tion and has scarcely any effect on the final computed ther-
modynamic and structural properties.

The final results do depend on whether the PY hard
spheres solution or the parametrized VW-HG fit is used for
the reference system. This is shown in Table II for the equi-
molar RLJ mixture with T = po}, ( Be)"'* =0.635 and
kzT /e = 0.501. The underestimation of g?,# (r) near con-
tact produced by the PY equation leads to larger effective

Thermodynamic
state Approximation U/NkT pV/NkT A/NkT Bdp/dp d, d,

kT /e = 0.501 VW/GH 0.735 3.94 1.99 9.24 1.0169 1.3979

I =028 2

X, =05 RY 3.92 9.18

kT /e = 0.501 VW/GH 2.330 10.33 4.92 3243 0.9810 1.3428

T =0.482 ' . 12.63

X =05 RY 0.24 2.6

kT /e =0.501* PY 4.480 18.92 8.28 85.28 0.9560 1.3070

I =0.635

x, =05 VW/GH 4.780 20.14 8.78 73.41 0.9561 1.3010
RY"? 20.02 73.48

kT /e = 0.423 VW/GH 5.365 22.46 9.71 85.56 0.9446 1.2888

' =0.8635

x, =075

*MC value p¥V /NkT = 20.22 (Ref. 12).
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TABLE I1I. Dependence of the thermodynamic properties of the RLY mod-
el on the reference system diameter d,, for the state with x, =0.5,
I' =0.635, kT /e=0.501, and d,, = 0.95605.

dy I, L pV/NKT A/NkT PBdp/dp U/NKT
13145 —049 —186 1983 8650 7735  4.700
13010  107¢ —10~% 2014 8720 7341 4780
12876 +043 +1.53 2040 8670  69.87  4.850

Enciso et a/.: Optimized RHNC equation

TABLE IV. Thermodynamic consistency of the RHNC approximation for
the system of Table I11.

r pV/NKT Bap/3p B,/B,
0.637 20.30 74.16
0.635 20.14 73.41 0.99
0.633 19.97 72.67

TABLE V. Computed thermodynamic properties of equimolar LJ mixtures: First row, Ar-Krat 7= 115.8 K
(Ref. 31); Second row, He—Xe near thermodynamic conditions of phase separation (Ref. 32).

V(cm® mol™!) U/NkT pV/NkT
Theory MC Theory MC TheoryMC  A/NkT Bdp/dp  di/o  dyfo
33.09 32.82 —7.014 —-7.101 0010 0.003 —3.8981 14.58 1.0121 1.0881
— 1.018 1.254 1.234 —-0.0714 2.37 0.6157 1.1198

TABLE VI. Composition dependence of the thermodynamic properties of LI mixtures for po, /€,; = 0.5 and

ks T/€,, = 1.0 (Ref. 33).

PO U/NkT
X, Theory MD Theory MD  A/NkT pV/NKT Bdp/dp d, /o, dy/oy,
0.75 0.6248 0.6256 —5.301 —5.314 2552 0.803 12.12 0.9986 1.2732
0.50 0.5303 0.5302 —5347 —535 —2547 0941 13.06 0.9963 1.2648
0.25 0.4602 0.4595 —5401 —5409 —2.546 1.087 13.87 0.9860 1.2620

packings (i.e., d5¥ >d }¥), which is reflected in the larger
magnitude of b lV’;((r) seen in Fig. 2 and affects the final prop-
erties of the system of interest.

Additional results for other thermodynamic states of
the RLJ mixture are given in Table II, along with similar
data from the recent work of Hansen and Zerah'? using the
RY!! closure. The present calculation yields a slightly larger
compressibility factor pV /Nk,T; both calculations are in
good agreement with the single datum available from Monte
Carlo simulation.'?

In Table III we show the variation of the thermodynam-
ic properties of the abovementioned RLJ mixture with
changes in the diameter d,, of the second component of the
reference system mixture. It can be seen that as the integrals
I, of Eq. (15a) pass through zero the free energy is made
extremal, though here it becomes maximal rather than mini-
mal.

Table IV presents a test of pressure consistency in the
computed results for the same state discussed above. Here
the bulk modulus B = V(dp/dV) ; obtained directly from
Eg. (18) is compared with the same quality computed by a
finite-difference derivative of the virial pressure. The good
agreement found between the two values in this case may be
fortuitous; a systematic check of this consistency was not
made.

Table V compares the computed thermodynamics for
LJ models of real mixtures with recent simulation results
using these potentials. Differences between the present val-
ues and the Monte Carlo (NpT ensemble) data of Mc-
Donald?! for the Ar~Kr mixture are larger than for the other
cases studied. (The computed solution was here obtained by
varying the input density until the resulting computed pres-
sure reasonably matched the NpT simulation value.) The
He-Xe mixture has been studied by Fiorese®? for a thermo-
dynamic state near phase separation, with k5 T /e = 10.685,
po?=0.49224, and x,, = 0.5053. The theoretical com-
pressibility factor is in good agreement with the Monte Carlo
(NVT ensemble) result,*? as are the pair distribution func-
tions, shown in Fig. 3. Small differences are seen in this fig-
ure in the first minimum of the cross correlation function
and beyond the minimum in the distribution function of the
larger component.

In Table VI we show the effects of variations in composi-
tion (x; = 0.75,0.5,0.25) on the thermodynamic properties
of the LY mixture recently studied extensively by Gupta®
using molecular dynamics (NpT ensemble) simulation. Dif-
ferences between the computed densities and internal ener-
gies and the simulation data are here within 0.2%. The good
agreement with simulation in this calculation is also seen in
the distribution function shown in Fig. 4.
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FIG. 3. Computed pair distribution functions of the LY mixture for the He—
Xe model. Discrete points are simulation results (Ref. 32); r*=r/
(x,0] + x,0)'°.
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FIG. 4. Computed pair distribution functions of an equimolar LJ mixture
with 0,,/0,, = 1.25 and €,, = €,, = 1.0. Discrete points are simulation re-
sults (Ref. 33).
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V1. CONCLUSIONS

We have extended and applied the optimized RHNC
approximation for the structural and thermodynamic prop-
erties of binary mixtures whose atoms interact through
spherically symmetric short-range potentials of RLY and LJ
type. The reference system employed for the calculation is a
binary mixture of additive hard spheres whose thermody-
namic properties are fixed by the MCSL equation of state,’
with the reference bridge functions obtained via the parame-
trizations of Lee and Levesque’ and Henderson and
Grundke,® modified to produce thermodynamic consistency
of the reference model. The computed results that are ob-
tained are in excellent agreement with available simulation
data®'-33 and in the case of the RLJ potential also with the
earlier calculation of Hansen and Zerah'? based on the Rog-
ers-Young'! closure. They are however very sensitive to the
precise knowledge of the reference system properties.
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