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The reference-hypernettedx'éhain equation, generalized to molecular fluids, is optimized by
choosing the reference system so as to minimize the free energy. This procedure, which assures a
significant improvement in the internal thermodynamic consistency of the theory, is here applied
to a fluid of dipolar hard spheres, using both the complete dipolar potential and one with a
reaction field (RF) truncation. We confirm that a recent reformulation of the relation between
the dielectric constant € and the mean square dipole moment for the RF geometry indeed brings €
for the truncated potential into reasonably good agreement with the infinite-range values, but that
the important correlation functions nevertheless differ qualitatively in their long-range behavior.
The method of solving the molecular integral equation, developed earlier, can be applied to other

multipolar potentials, or alternatively, to molecules with distributed point charges.

I. INTRODUCTION

The reference-hypernetted chain (RHNC) integral
equation,' broadened in its scope by the Rosenfeld~Ash-
croft? insight of an adjustable reference system, and opti-
mized by requiring this adjustment to minimize the free en-
ergy,” has proved to be a versatile and reliable tool in the
study of simple fluids.>* The formal generalization of the
same procedure to molecular fluids is straightforward’; as
yet, however, no actual calculation for anisotropic potentials
has been carried out using this prescription. In this paper, we
report the results of applying the optimized RHNC equation
to a fluid of dipolar hard spheres.

To the usual difficulties of dealing with the additional
degrees of freedom in molecular systems, particles with di-
polar interactions add a special problem of their own, that of
coping numerically with the comparatively long-ranged na-
ture of this potential. This is particularly troublesome for
numerical simulation studies, which most often adapt them-
selves to the finiteness of the simulated sample by truncation
of the intermolecular potential and imposition of toroidal
boundary conditions. Ironically, the macroscopic property
of central interest for dipolar models, the dielectric constant
€, turns out to be very sensitive to such modifications, with
the result that not only has there been some controversy over
the correct way to compute € in finite geometries so as to
simulate bulk values, but in practice the values of € that have
been reported show discouraging scatter.® More recently,
rigorous expressions connecting € with the equilibrium di-
pole moment fluctuations in truncated geometries such as
the reaction field method have been derived.”® Nevertheless,
for the dipolar potential, computer simulation methods have
so far played something less than their usual role as makers
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of touchstones.

Integral equations, on the other hand, can easily deal
with such long-range functions as the dipolar potential; their
shortcoming instead is that they are inherently approximate,
often to an unknown extent until their results can be system-
atically contrasted with those of simulation studies. In the
present context of complementary weaknesses, however, a
reliable approximate integral equation can be a valuable aid
to the simulation techniques themselves, in that it can pro-
vide an independent testbed for the study of the effects of the
inevitable modifications of the model potential that the latter
must accept. A small effort in this direction is included in
this paper.

Recently, Fries and Patey” have reported data obtained
from the RHNC equation (without optimization) for three
thermodynamic states of dipolar hard spheres. They find the
results to be in much better agreement with simulation data
than those of several earlier theories, especially for the di-
electric constant. Hére we repeat these calculations for com-
parison. We further obtain the solution of the optimized
RHNC equation for a larger collection of thermodynamic
states, using both the complete dipolar potential and the sim-
ulation version with reaction field (RF) truncation. In brief,
we find that the (presumed) improvements from the opti-
mization condition, here applied to a hard sphere reference
system, mainly appear in the mechanical quantities of pres-
sure and compressibility, with the dielectric constant being
scarcely affected. Furthermore, we confirm that the recent
RF formula for ¢”® brings its value into consonance with
that of infinite samples (provided the cutoff distance is large
enough), while the correlation functions using RF trunca-
tion nonetheless display anomalous long-range behavior.

For the sake of minimal completeness, Sec. II contains a
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brief outline of the algorithm'® used to solve the optimized
RHNC equation. (We note that essentially the identical pro-
cedure can be applied to other multipolar potentials, or alter-
natively, to molecules with distributed point charges, as well
as to molecules with nonspherical cores.!') The results of the
calculation for dipolar hard spheres are given in Sec. III.

Il. PROCEDURE

The numerical task at hand is to solve the Ornstein—
Zernike (OZ) equation

S(12) =4_’;.fdr3dw30(13)[S(32) +C(32)1, (1)

coupled with the RHNC closure
C(12) =exp[ — Bd(12) + S(12) + B,(12)]
—-1-—-5(12) 2)

for the series function .$(12) and the direct correlation func-
tion (DCF) C(12). [The potential ¢ (12) and the reference
bridge function By(12) are assumed to be given. They are
discussed below.] With a solution in hand we may then con-
struct the pair distribution function (PDF)

8(12) =exp[ — Bg(12) + S(12) + By(12)], (3)

and determine the thermodynamics of the molecular fluid at
density p and temperature 7= 1/k; 8 through standard
quadratures.

The pair functions such as .S(12) for linear molecules in
these equations depend in general on the separation r,,
between the molecular centers of mass and on the orienta-
tions w; = (0,,¢,) and @, = (6,,4,) of the two molecular
axes referred to some arbitrary coordinate frame,

S(12) = 8(rpp0,,0,) . (4)

The simplest such representation results from the choice of
r,, as the z axis of the coordinate frame, for which now

S(12) = 8(712,0,,0,,612) (5
can be expanded in spherical harmonics as'?

S(12) =47 Z Slllzm ("12)Y1,m (o, )lem (), (6)
I,,m
where m = — m and ¢,, = ¢, — ¢,. The calculation is then

to determine a finite but sufficient set of the axial S, , (7)
projections. Other orientation-dependent functions are han-
dled similarly.

The solution of the nonlinear equations (1) and (2) is
by iteration; the steps constituting one iteration are outlined
below. For a more complete presentation of this procedure,
as well as additional references, the interested reader is re-
ferred to Ref. 10.

(i) Compute the DCF coefficients

From the current set of S,l Lm () coefficients we con-
struct the set

CI,Izm () =81um (r) — 51,12”.,000 - Slllzm (r), N
using Egs. (2) and (3), where

B (1) = [ dodog DY 1, @)V Em (@) (®)
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is evaluated with n-point Gaussian quadratures as

1
&rm (1) =—

Wi, Wi, 8(rXy, Xx,5 ¥;)
n ok ki

X P im X)) P 1y X3, ) (= DY"T, (3;) . (9)

Here x;, and y; are the n zeros of the Legendre polynomial
P, (x) and Chebyshev polynomial T, ( y), respectively, the
weights w, are

wk={(1‘xi)[});ﬂ(xk)]2}—l, (10)
and #,,, (x) is the associated Legendre function normalized
to 2. The full angular dependence of g(12) is obtained

through Eq. (3), with S(12) reconstructed from its coeffi-
cients using Eq. (6), which now reads

S(r,xy, x5, )
= Z Shim (r)‘@Ilm (xl)ﬂlzm x)(—=1D"T, (y).
I,hL,m

(11)

In the present calculation, the dipolar potential is similarly
represented while the reference bridge function B,(12) has
only a spherically symmetric term (see below). All r-depen-
dent functions are evaluated at the points r, =jAz,
j=12,..,N, —1.

(#j) Convert to space-fixed frame

. The OZ equation is deconvoluted using Fourier trans-
formation. To compute the Fourier transform of C(12) we
must represent it in some coordinate frame other than the
axial one. This amounts to generating a new set of space-
fixed coefficients from the axial ones by a Clebsch—-Gordon
(CG) transformation,

477- 172 _
21+ 1) z <llm12m|lll2lO)CIllzm (r) ’(12)

where the angular brackets are Clebsch—-Gordon coeffi-
cients.

C(rl L) = (

(iii) “Lower” the | >~ 0 members

The Fourier transform of C(r;/,1,!) involves a spherical
Bessel function kernel j, (k7). To avoid the complexity of
several different transform algorithms, those coefficients
with />0 are first “lowered” to new functions C ' (r;/,1,0),
which can be transformed with a j,(k7) kernel, by repeated
application of

C(k"Z)(f;lllzl) — C(k)(r;lllzl) — Rk—=1)F"?

O OlLI
X [ ax LD, (13)

starting from C ° (r;/,1,])=C(r;1,1,]). In the present calcu-
lation, the coefficients of C(12) have a finite discontinuity at
the core diameter which must be taken into account in evalu-
ating Eq. (13). The trapezoidal rule is used to evaluate the
integral.
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(Ilv) Compute Fourler transforms
The transforms

Clkl L] = 417'f dr PCO(rl Lj,(kr) (14)
0

are computed using the fast Fourier transform (FFT). At

the core discontinuity, C @ (r;/,1,]) is assigned its mean value.

Fourier transforms are determined at the points k; = jr/

N,Arj=12,..N, — 1.

(v) Convert to axial frame

Having obtained the transform of C(12), we must now
solve the OZ equation for the transform of S§(12). This turns
out to be simpler if done in terms of an axial set of coeffi-
cients, with k as the z axis. Thus, we perform another
Clebsch-Gordon transformation [the inverse of Eq. (12)]
to generate the set
Com () = S (k7| lmly] o)( 2’4: !

- ;

12,
) Tl L) .
(15)

(vi) Soive the OZ equation for $(12)

The solution of the OZ equation is now effected as a set
of matrix equations,

S, (k) =(—1"p[I = (= 1)"pC,, (k)] '[C,. (k) ],
(16)

where the matrices S,, (k), C,, (k) have elements S‘,I 1,m (K,
C,l,zm (k), respectively, with /,,/ ,>m.

(vil) Convert to space-fixed frame

We now seek to Fourier invert 5‘(12) to get S(12).
Again, this requires a nonaxial frame of reference, so the
axial coefficients S, , ,, (k) are converted to a space-fixed set
through another CG transformation,

- 47;. 1/2 _ -
Skt L) = (21 . ) 5 |1 003, ()
(17)

(vili) Compute inverse Fourier transforms
We can now perform the Fourier inversion to get

SOrLLL = _I_.Jw dr PS(k;l Do (kr) (18)
27 Jo

using again the FFT algorithm.

(Ix) “Raise’ the I > 0 members

As the inverse of Eq. (14), Eq. (18) generates the
lowered version of the S(12) coefficients. These must next
be raised by the inverse of the operation in Eq. (13). This is

SO(rLL =S * =2 (rLL)
_%ETI_J dx x*S *=D(x;1,LI), (19)
(1]

applied recursively until reaching k = /. To avoid magnify-
ing quadrature errors at small » upon dividing by ** !, the
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integralin Eq. (19) is evaluated using a modified trapezoidal
rule, whereby only S(x) is fitted by linear interpolation.

(x) Convert to axial frame

The final step completing one iteration is to generate the
new axial projections of S(12) by a CG transformation like
that of Eq. (15),

— 21+ 1\2
Spim (1) =Y {imli|1,1,10) yy Sl LD . (20)
[

Here a test is made of the differences between the new and
old axial coefficients of S(12); if they are not small enough,
we return to step (i). To speed the convergence, we have
adopted Gillan’s'® method of performing Newton—Raphson
iterations, but for simplicity only for the dominant radial
term Syo0(7). Broyles’ method of mixing iterates' is also
helpful in coaxing convergence in the more stubborn cases.
The dipolar hard sphere potential is

6(12) = dys (r) + dpp (12) (2n
where
Sus(r) =, r<o
=0, r>o (22)

for hard spheres of diameter o, and where the dipole—dipole
part épp (12) has axial coefficients
2

2
Pr10(r) = “5‘% ,
(23)

2

1
$u(r)=¢y_ (N = "—3'%»

with u the dipole moment. The leading nonvanishing axial
coefficients of, say, S(12) are then (arranged in S,, matrix
format):

Sooo Szoo S400
S0 Ss10
S220 Sa20
Si30
S0
Sin S
S221 S421
Sia
Sia1
Sr22 Sz
Sz
Saaz
Siss
Saaz
Sia

By symmetry, S, ;... () = Sy, m (r) = S}, () for the non-
vanishing coefficients, so the displayed elements are the only
independent ones through index 4. The number of coeffi-
cients employed in the calculation is determined by the
choice of the largest value of m to be used; for
max m = 0,1,2,3,4,... we need, respectively, 1,3,7,13,22,...
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coefficients (the cumulative sum in the successive columns
above). Our calculation can use all the displayed coeffi-
cients; in practice, we find the set of 13 for max m = 3 to be
entirely adequate, as did Fries and Patey® for their similar
calculation.

The reference system from which B,(7) is obtained for
use in Eq. (3) is here the hard sphere fluid, as modeled by
Verlet-Weis'® and Henderson-Grundke, ' for spheres of di-
ameter o,. The choice o, = o constitutes the usual RHNC
approximation.'! The reference system can be optimized,
however, by treating o, as a variable parameter” and requir-
ing that its choice satisfy the constraint®>

OBy(r) -

To

p f dr Lo (r) — 26(P) 1% 0, (24)

where goo0(7) is the radial part of the dipolar hard spheres
PDF and g,(7) the reference PDF. This condition for o, has
two effects. First, it minimizes the free energy functional
associated with the RHNC equation and, second, it removes
the inconsistency, otherwise present in the RHNC approxi-

29019

For simple fluids, Eq. (24) is further found in practice to
improve the computed results.>*

General expressions'? for the internal energy U and the
pressure p become, for dipolar hard spheres,

BU/N =2mp f"" dr P1g110(rBd110(r)
o

+ 2811.:(r)BP 11 (1) ] (25)

and

Bp/p =1+ 31pcgese(o) + BU/N, (26)
while the isothermal compressibility y is given by the usual
expression

o —1
pks Ty = [1 - 417'pf dr rZCooo(r)] .
0

The RHNC equation provides the free energy A4 in the
form"!

(27)

mation, between the pressure obtained by differentiation of BA/N =pBAy/N + (BA4 /N — BA4y/N) (28)
the free energy and that obtained from the virial theorem.| where A, is the reference system free energy and
v - 1 dk T m =
BAA/N =1[(pkpTy)™ ' —1] —-Tp— ET? Y [Indet(I+ (—1)"ph, (k)) —(—1) '‘pTrh,, (k)]
07 S im0 [Fin () =510 ) ]] 29)
Lihm
BAy/N =3[ (phsTye) ™' —1] — -2% (;’;‘)3 {In[1 + pho(k)] — pho(k) + p?ho(K) [$ho(k) — 5oV 1}, (30)

In Eq. (29), h,, (k) is the matrix with elements ﬁ,l,zm (k),
I,» IL,>m, while det and Tr are the determinant and trace
operations. Equation (30) is the reference system version of
Eq. (29), which in the present calculation involves just radi-
al functions.

Finally, of particular interest for the dipolar system is
the dielectric constant €. For infinite samples, it is obtained
equivalently from the Kirkwood formula'’-'®

(e—-1)(2e+1) —

, (31)
9% yg

with y = 4mpfu’/9 and

g=1+1ph'°0), (32)
and from the asymptotic form'®'®

—1?
Ry~ LD (33)

" 4mpeyr’

In these expressions, we have introduced variants of the
space-fixed coefficients defined by the CG transformation,
Eq. (12) to conform with common usage. Specifically, we
have

hYO(r) = — 3V20(r110) = hyyo(r) — 2k, (),
(34)
BU2(r) = 3)V2h(r112) = hyyo(r) + by (1),

Iand similarly for the transforms. [ These functions have also
been called 4, (r) and h;, (r), respectively, in many works. ]
Asnoted, Egs. (31) and (33) should produce the same value
for the dielectric constant, which provides a useful internal
check on the calculation. [For large values of u, however,
Eq. (31) is the more reliable numerically.] It should be re-
marked that the transform at £k =0 in Eq. (32) must be
calculated from those of the corresponding € ''°(0) and
S119(0) obtained by step (vi) of the procedure outlined
above; the direct evaluation of % '°(0) by integrating over
h '1°(#) is numerically unreliable. This is especially true for
the truncated potential discussed next.

Simulation methods using toroidal boundary condi-
tions® must, as noted earlier, use potentials of finite range,
enforced by truncation if necessary. The reaction field meth-
od of Barker and Watts?® is an attempt to heal the effects of
this cutoff of the dipolar potential that is equivalent®! to an
effective dipole—dipole interaction with axial coefficients

2

¢Tf1ro (r) = @y10(r) — :{;3 »

2
‘ﬁflr: (")=¢111(")+£ r<R,

3 2
c

and (35)
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TABLE L. Thermodynamics of the dipolar hard spheres fluid at po® = 0.8 with no truncation of the potential.
Results with g,/0 = 1 are from the RHNC equation; those with gy/0 < 1 are from the optimized RHNC

equation satisfying Eq. (24).

Bu*/o’ /o BU/N Bo/p pkTyy BA/N €
0.5 1.0 —0.326 747 0.0373 322 3.70
1.0 1.0 —0972 7.01 0.0385 2.81 8.83
1.0 0.9978 ~0.973 7.07 0.0389 2.81 8.83
1.5 1.0 —1.75 6.50 0.0399 2.27 17.4
1.5 0.9948 —175 6.62 0.0410 227 17.3
2.0 1.0 ~2.61 5.96 0.0416 1.66 31.8
20 0.9915 —2.62 6.17 0.0435 1.65 31.8
225 1.0 ~3.07 5.69 0.0426 1.32 433
225 0.9898 ~3.08 5.95 0.0449 1.31 43.1
2.50 1.0 —3.54 5.41 0.0436 0.979 60.5
2.50 0.9878 —3.55 5.72 0.0465 0.975 60.4
275 1.0 —4.03 5.13 0.0449 0.620 91.8
275 0.9860 —4.04 5.49 0.0483 0.617 91.7
¢t (r) =0, needed to satisfy Eq. (24) also tabulated. The greatest effect
of the optimization is on the radial functions, which is re-
T =0, r>R,, flected here in the larger changes it produces in the comput-
where ed pressure and compressibility. The dielectric constant, on
2 0 the other hand, is scarcely affected. The first few axial pro-
f="2F (36)  jectionsofg(12) and ~(12) are shown, respectively, in Fig. 1

2¢gr + 1
and R, is the cutoff separation, while €gy is the dielectric
constant of the infinite continuum surrounding the trunca-
tion sphere. For this interaction, Eq. (33) is no longer valid
and Eq. (31) must be replaced with"®
(e —1)(26ge + 1)
3(e+ 2€gg)

with g still determined by Eq. (32). The other thermody-
namic formulas are not affected by this change, with the
exception of the pressure, which picks up an additional con-
tribution from the new delta function in ¢’'(12) at r=R,.
This is a small effect which has been included in the data
reported below. The new discontinuitiesin C(12) and g(12)
at r = R, also call for special treatment in integrals such as
those of steps (iii) and (iv).

=g, 37

ili. RESULTS

The iterative solutions were typically started from the
converged solution of a neighboring thermodynamic state
and continued until the largest difference between successive
iterates of 7S, ; ,, () was less than 103 for all 13 coefficients
used. With Gillan’s method'® accelerating the convergence
of Syeo(7), the last coefficient to converge was generally
S110(7). To ensure a sufficient range, we used N, = 1024
points with an interval Ar = 0.02¢ in the solutions with the
complete dipolar potential. With the truncated potential, an
adequate range is more of a problem and the number of
points was doubled to 2048 with the same grid size. The
Gaussian quadratures of step (i) were done with n = 10.

The computed thermodynamic properties of the dipolar
hard sphere fluid at density po” = 0.8 are shown in Table I
for seven values of the reduced dipole moment. Results from
both the usual RHNC equation (o, = o) and the optimized
RHNC equation (o,<0o) are given, with the value of g,

and as the solid curves in Fig. 2 for the (optimized) case at
po® = 0.8 and Bu*/c> = 2.0.

Computed properties for the truncated potential, Eq.
(35), with R, = 4.50 and € = 50, obtained from the opti-
mized RHNC equation are listed in Table II. There is gener-
ally excellent agreement with the corresponding data in Ta-
ble 1, including quite good correspondence of the dielectric
constant computed using Eq. (37) with the infinite sample
value from Eq. (31) for the first two states of Table II. For
the last state with the largest dipole moment there is signifi-
cant difference in €. To check if this is due to the cutoff

50 | T T

200

FIG. 1. Axial coefficients of g(12) for the dipolar hard spheres fluid at
po® =0.8 and Bu?/0® = 2.0, obtained from the optimized RHNC equa-
tion. Results for the complete and truncated potentials are identical on this
scale.
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hiipm (k)

1 | | I | 1
0 5 10 15
ko

FIG. 2. Axial coefficients of 4(12) for the dipolar hard spheres fluid at
po® = 0.8 and Bu/o® = 2.0, obtained from the optimized RHNC equation.
The solid curves are for the potential with no truncation, dashed curves for
the potential with reaction field truncation.

separation of 4.5¢ becoming more inadequate as & increases,
as seemed likely, we have recomputed this state using R,
= 6.00 with other parameters unchanged. The effect of this
on € is indeed large and is seen to move the finite sample
value much closer to the bulk value. Such an increase in R,
would require roughly a doubling of the sample size (num-
ber of molecules) in a computer simulation.

While the reaction field correction does produce a di-
electric constant in consonance with that of an infinite sam-
ple, the long-range behavior of the correlation functions for
the truncated potential is nevertheless anomalous. This
would not at all be evident on the scale of Fig. 1, which
indeed could as well be that of the truncated potential data.
It shows up strikingly, however, in the short-range behavior
of some Fourier transforms, as seen in Fig. 2, where the
dashed curves are for the RF potential. For very small k, the
axial coefficients most significant for the dipole potential,

2921

TABLE I1. Thermodynamics of the dipolar hard spheres fluid at po” = 0.8,
with reaction field truncation of the potential, obtained from the optimized
RHNC equation. Two truncation distances R, were used for the last state.

Bu*/a®> R./o PBU/N Bp/p pkyTy BA/N €
1.0 4.5 —0.969 7.06 0.0389 2.81 8.74
20 4.5 —2.61 6.16 0.0434 1.65 30.5
2.75 4.5 —4.03 5.47 0.0479 0.619 76.8
2.75 6.0 — 4.05 5.47 0.0483 0.608 91.1

h,10(k) and h,,,(k), are clearly distorted by the potential
truncation.

Fries and Patey® have reported values of 8.82, 31.7, and
93.0 for € and —0.98, —2.62, and — 4.04 for BU/N at
po” = 0.8 and Bu’/o” = 1.0, 2.0, and 2.75, respectively, ob-
tained from the RHNC equation for the infinite system.
These results are in excellent agreement with our data in
Table L.
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