JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 2 8 JANUARY 2002

Theory and simulation of the triplet structure factor and triplet direct
correlation functions in binary mixtures

S. Jorge
Instituto de Qumica Fsica Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
and Departamento de Quica Fsica |, Universidad Complutense, E-28040 Madrid, Spain

E. Lomba
Instituto de Qumica Fisica Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain

J. L. F. Abascal
Departamento de Qmica Fsica |, Universidad Complutense, E-28040 Madrid, Spain

(Received 4 September 2001; accepted 18 October)2001

In this work we present structure factors and triplet direct correlation functions extracted from
extensive Monte Carlo simulations for a binary mixture of hard spheres. The results are compared
with the predictions of two integral equation theories, namely, a recently proposed extension to
mixtures of Attard’s inhomogeneous integral equation approach, and Barrat, Hansen, and Pastore’s
factorization ansatz. In general, both theories yield acceptable estimates for the triplet structure
functions, though, by construction, the inhomogeneous integral equation theory is more suited to
furnish triplet distribution function results, whereas the factorization ansatz provides a more handy
approach to triplet direct correlation functions. ZD02 American Institute of Physics.
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I. INTRODUCTION ing in both cases is a clear assessment of the quality of both
approximations as far as the mixture direct correlation func-

Triplet correlation functions play an essential role in the ) , )
tion is concerned. Therefore, in this work, we present the

description of the structure and dynamics of fluids, in par- : )
ticular for systems whose behavior cannot be explained if€Sults of extensive Monte Carl®C) calculations for the

terms of simple models like the pure hard sphere system 0tlriplet direct correlation function and the triplet structure fac-
the well known Lennard-Jones fluid. Thus for instance, th¢®r for & hard sphere mixture and perform comparisons with

triplet correlation function provided key structural informa- the theoretical approaches proposed in Refs. 5 and 7. From
tion to understand the role of the Peirls distortion and chemith€ triplet structure factor, which can be extracted directly
cal ordering in liquid GeT&Also in a system like water, the from appropriate structural averages along the simulation
analysis of the triplet distribution function explained how theun; it is possible to obtain the triplet direct correlation in
decrease in the pair structure upon cooling near the tripl€&ourier space in a straightforward fashion.
point is correlated with an increase in the local tetrahedral ~ For our inhomogeneous integral equation formalism we
ordering of the water moleculésAs to dynamics, Sciortino have chosen a self-consistent closure, the Self-Consistent
and Ko have shown that the inclusion of the triple direct Verlets Modified approachSCVM),? which is known to
correlation function in the framework of the Mode Coupling Yield excellent results at the two particle level. Following
Theory is essential to reproduce the wave-vector dependen&ishiki® the self-consistency parameters are taken from the
of the Debye—Waller factor in supercooled silica. However,solution of the homogeneous equation. Also here the pair
the actual calculation of the triplet correlation functions is fardistribution functions, which will be shown to be extremely
from being a trivial problem, neither theoretically nor in accurate, are directly taken from the homogeneous equation
terms of computer simulatich. and are not iterated to self-consistency. The inhomogeneous
The situation is even more involved when dealing withapproach thus formulated will be denoted as inhomogeneous
multicomponent systems. The authors, in collaboration witiSCVM (ISCVM). We will see that both the BHP theory us-
Kahl® recently presented a study of the extension to mixing as input the density derivatives of the pair correlation
tures of the integral equation based on the factorization arfunction provided by the SCVM theory and the ISCVM ap-
satz proposed by Barrat, Hansen, and PasBP).° The proach provide a rather accurate picture of the three body
comparisons performed in Ref. 5 were carried out at the levedlirect correlation functions and triplet structure factors.
of triplet distribution functions given the scarcity of data in Moreover, the ISCVM triplet distribution function is particu-
the literature for triplet direct correlation functions. Besides,larly accurate. For this property, the BHP results are plagued
in a recent work, the authors presented an extension to mix-with the some spurious effects stemming from the inverse
tures of Attard’s inhomogeneous integral equation formalismFourier transformation of a discontinuous function. But, in
for the calculation of three body correlation functidhs, general, aside from these numerical uncertainties in the Fou-
which turned out to provide fairly good estimates for asym-rier transforms, the accuracy of both approaches is compa-
metric Lennard-Jones mixtures. Still, what seems to be lackrable.
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The rest of the paper is organized as follows: Sec. Il is
devoted to a brief presentation of the simulation details. Sec-
tion 1l contains a summary of the inhomogeneous integral
equation approach. The essentials of the BHP ansatz in the
mixture case are collected in Sec. IV. And finally, our most
significant results are presented and commented upon in
Sec. V.

II. SIMULATION OF TRIPLET CORRELATION
FUNCTIONS

k

. . . FIG. 1. Isosceles triangle configurationkrspace.
The MC simulation technique has been used to study a 9 g P

binary equimolar hard-sphere mixture with packing fraction
7= (l6)(p/2)(0),+ 05) = 0.4—p being the total number
density—and a size ratio,,/oz5=0.8. The structure fac-
tors S{2)(k) and 8‘3)§(k k') are calculated evaluating the
correspondlng averag

mixture. The theory analyzes the triplet structure of the fluid
considering one of the particles of a given triplet as a source
of an external field. Therefore, the Ornstein—Zern{k)
integral equation becomes inhomogened@Y), and for a
mixture of n components reads

5(2)(k)__<PkP K )
hﬁz,zuy(rl’r2v012):C£/,23}/(r1’r2v012)

S@(k,k') =< (plplpt 2 :

va( ) <pkpk P k—k > ( ) +)\21 j dl’4p)\},(r4)C£L2)\)},(l’1,l’4,014)
whereN is the particle number, and the Fourier components @
of the densityp(r)=3,;8(r—r;) are Xh\oyrair2, 04, (5

_ being hfgy(rl,rz) the pair total correlation function and
Pk:Ei e 'k, ) cﬁfy)y(rl,rz) the pair direct correlation function. Coordinates

r, andr, correspond to particlesa and v, respectively, and
Using the pair and tr|plet structure factors, the tnpletcosg =rir;/Irir;
direct correlation funct|ons( ,:(kK,k") can be calculated by ThIS approach considers the source particj¢ &s an
solving a linear system of equatlons derived from the triplefnhomogeneous perturbation in the system, and consequently
Ornstein—Zernike equation, instead of the homogeneous dengitywe will have a den-
sity profile p,,(r) aroundy. This density profile is actually
S2.(kk) =2 SZ(k)S2Z(K)SZ(k+k']) connected to the homogeneous pair distribution function
€ throughp, ,(r)=p,9,,(r). As done in Ref. 7, it is possible
to obtain the density profile from the three particle distribu-
X| ;2 9cadentp 3 (kK. (4 tion functions by means of the Triezenberg—Zwanzig—
€ Wertheim—Lovett—Mou—Buff(TZWLMB) (Refs. 12, 13
It should be pointed out here that in Ref. 5 in the correspond-
ing equation[Eq. (15)] the indices of the pair functions are
misplaced and as a consequence the results presented there” 0.8
are affected by minor errors, as will be shown in the follow-
ing sections. For the sake of simplicity only isosceles tri-
angle configurations corresponding i&|=|k’|=k and
cosf=Kkk'/|kk’| have been analyzed, and therefore the
maximum value oflk+k’| is 2k (see Fig. 1L For a 500 0.4
particles sample, the simulation has been run along 6.3
X 10" steps, which is of the order of the simulations recently
carried out to evaluate triplet correlations in liquid silita.
Statistical averages have been taken ovekad® configu-
rations, and standard errors have also been estimated usin

0.6

&

(2}
uv

S
o
o

0
block averages, leading to variances below 0.4% for the pair
structure factor, around 10% for the triplet structure factor,
and ranging from 1 to 30% f&&>).(k,k"). 0.2
1 I 1 I 1 I 1
lIl. THE INHOMOGENEOUS INTEGRAL EQUATION 0 5 10 15 20
The inhomogeneous integral equation approach pro- ko

posed by Attariwas already discussed for mixtures in Ref. FIG. 2. Pair structure factorS?)(k) for a hard sphere mixture calculated
7, where it was applied to study a binary Lennard-Jones fluigrom simulation(symbol$ and the SCVM integral equaticfiines).
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FIG. 4. Triplet structure factor for an isosceles configuration of like particles
FIG. 3. Triplet distribution function g%, (Fuw.See,8) and  SSl.(k.k,x) andS{),(k,k,x) vsx=cose. Open symbols denote simulation
I el wa »Saa »0) between like particles in an isosceles configuration for a results forko=5.46 and solid symbols correspond ko=6.93. Dashed
hard sphere mixture. The source particle in the ISCVM approach is theeurves represent BHP results and solid curves the ISCVM.
smallest particlex.

- 3 _ ;
where(},,= w(1.1-po,,/3) ands,,,=h,,,—c,,, is the

equation and recalculate those triplet functions with a neWnirect correlation function. The interpolation function can
density profile, iterating until convergence. In this work, thebe expressed as

high qu%ity of the density profiles obtained from the SCVM
equatior, enables their use as a direct input for Eg). No p—1
itgration will be used since these profiles F:nay beE(i;i’onsidered Ppur1il2,012:9) = 1+ [1+tanhry,—oy,,)] 2
essentially exact. (8)

The 10Z equation is complemented with a closure rela
tion which relates the interaction potenti),,(r,,) to the
pair correlation functions. It can be formally written as fol-
lows:

‘where the parameteizand w are taken from the solution of
the homogeneous equatiofi*in which consistency be-
tween virial and fluctuation theorem compressibility, and
also between chemical potential and virial pressure is im-
9yoy(T1:12, 019 =Xp{— Bu,,,(F1) +h(Z)(r1,15, 015  posed. o

) ) From a practical point of view, in order to solve the 10Z

—Cfﬁy(rl,rzﬁlz) equation the three particle functions are expanded in Leg-
endre polynomials to obtain
+ BMV}/(rlar21012)}v (6) R
vy — pHYY
wheref=1/KgT, r1,=(rf+r5—2rr, coséy)*? andB,,, hn #(r1,12) =8 (r1.12)
is the bridge function. In our calculations we have used the 4r
bridge function corresponding to the SCMIRef. 9 closure + STl 2 f dr4rﬁpw(r4)
A=1 :

which implements certain degree of thermodynamic consis-

tency. Namely, XEMMY(r 1 )hNY(1 4,1 ,), 9

D), 1) -
2[1+Qwsw_y(r)]’

with the hatted quantities representing the coefficients of the

B,uvy(rler!elZ): . . . .
: inhomogeneous functions in the Legendre series and
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FIG. 5. Same as Fig. 4 fdto="7.35(empty symbolsandko=7.77 (solid FIG. 6. Triplet structure factor for an isosceles configuration of unlike par-
symbols. ticles S),(k.k,x) and S5, (k.k,x) vs x=cosé. Legend as in Fig. 4.

denotes the order of the Legendre polynomial. The hard corgi-, rejates with the sought triplet structure factor via
discontinuities introduce additional difficulties to evaluate

the Legendre transforms. To cope with this we have followed S5 (K,k')=8,,,8,,X,F 8,1, X,ph,,,(K')
the procedure suggested by Attamhich is summarized in

the Appendix for completeness, since some misprints have +8,,X,%X,pN,,(K)
been found in the expressions of Ref. 8. In order to solve ~

- o , + 8, %,%,ph, (|K+K'|)+X,X,X,p>
Egs.(5) and(6), equations with different source particles are L L vy
decoupled as in Ref. 7. Also now the Generalized Minimal » (3
RESidual algorithm for nonlinear systems of equatiéBM- XJ’ e e R (v r)drdr’. (12)

RESND (Refs. 7, 15, 1B has been used to solve each ) _ _ ) _
functions have been discretized on a grid of 2048 points witffan be evaluated by means of E4).
mesh size 0.0125b (o being the biggest particle diameter
The number of grid points on the radial coordinate was set té&v. THE BHP THEORY
250, :?md the discrete Legendre transforms have been carried The theory of Barrat, Hansen, and Pastaesumes a
out with 64 angular nodes. A . . . .
: . factorization ansatz for the triplet direct correlation function
From the solution of Eq¥5) and(6) one gets the inho- <@ (r t') of the form
mogeneous pair distribution function, which relates to the ure(1T7) '

triplet distribution function through C(r,r ) =thrE(|r—r g (k). (13
gfgy(rl,rz,cos@lz):gw(rl)gw(rz) The tﬁﬁg(r) function of the ansatz can be calculated
i @ from the sum-rule,
X Gy (I1,72,C0S012). (10 562(r)
? c2(r
In turn, the triplet total correlation function is given by (’;;V=J ci2(r,r)dr’
he (rr) =g (r,r)—h,(r)—h,.(r") g g g
— MV wv AYY A% Y ’
—h,u,,(|r+l”|)—l, (11) tM‘f (r)f tmf (r )tp,v (|r r |)dr ’ (14)
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FIG. 7. Same as Fig. 6 fdto=7.35(empty symbolsandko=7.77 (solid FIG. 8. Angular dependence of Fourier transform of the triplet direct
symbols. correlation function for an isosceles configuration of like particles
¢, (k.k,x) andc§)a(k,k,x).

aaa

which in k-space reads dent to use both the SCVM pair correlation functions as
FE (k) 3 , input for the ISCVM equation and to provide the derivatives
ap =Tk k'=0). (15 of the SCVM direct correlation function within the BHP for-

malism.
The derivatives of the direct correlation function are nu- Among the triplet distribution functions obtained from

merically evaluated from the results of the SCVM equationtheory and simulation, only that corresponding to like par-

forgthe mixture and are the only input required. Once thecles s illustrated in Fig. 3 for isosceles configurations. The
tj., (r) functions have been calculated, they are Fouriergyp gata presented here are in better agreement with MC
transformed and used to calcul&g),(k,k’). Introducing  than those of Ref. 5 due to the correction of Ed). As
TP)i(k,k") in the triplet OZ integral equatiofsee Eq.(17)  pointed out by Bildstein and KaHifor the single component

in Ref. 5] one can obtaiﬁiifgg(k,k’) and, after an inverse case, the most accurate results are produced by the inhomo-
Fourier transform, the three particle total correlation func-geneous integral equation approach, i.e., by the ISCVM in
tion, h®.(r,r"). S)(k,k’) is easily obtained from the Fou- our case. Note however, that the BHP results are plagued

rier transformed triplet direct correlation function using Eq.with the inaccuracies of the inverse Fourier transformation

(4). which is a highly nontrivial numerical problem in the case of
All the numerical details relative to the calculations inhomogeneous functions. Also, as found in Ref. 7 the re-
within the BHP formalism can be found in Ref. 5. sults of the ISCVM approach are considerably less accurate
when the largest particle is taken as source particle. Once

V. RESULTS again, we might well think that the largest size implies a

larger perturbation potential in the inhomogeneous integral
As mentioned before, one of the key input quantities inequation—let us recall here that the integral equation is de-
the theoretical approaches dealt with herein, is the pair strucoupled according to the type of source particle used. It has
ture of the homogeneous fluid. In Fig. 2 we have plotted thealso to be mentioned, that despite the inaccuracies stemming
partial structure factors obtained from the simulation averfrom the inverse Fourier transform, the ISCV§#)s are in
ages and the SCVM results. It is immediately evident that thesomewhat better agreement with MC than the corresponding
agreement is practically perfect. Consequently, we are confiresults obtained in Ref. 7 for Lennard-Jones systems using a
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As to the triplet structure factor, this is depicted in Figs.
4-7. One sees that both theoretical approaches yield results
almost within the statistical uncertainties of the simulation.
However, one observes that for given configurations the IS-
CVM results exhibit certain artificial wiggles, which stem
from the Fourier transform procedure. The only alternative to
suppress these wiggles is to increase the number of radial
coordinates and decrease the angular grid in the inhomoge-
neous functions, however, the calculations presented herein
are at the limit of the available computational facilities.
Nonetheless, as a whole, one would be tempted to say that
both approaches have comparable accuracy.

Finally, in Figs. 8 and 9 we have depicted the results of
T®).(kk,x) for different configurations. We can see that the
theoretical approaches yield results practically within the sta-
tistical uncertainties. Again here, the ISCVM results present
the characteristic wiggles resulting from the Fourier trans-
form, and these are magpnified in the cas&g},(kk’) due
to the way in which this quantity is obtained. This can be
easily understood by examining the expressions that relate
T®(k,k") andS®)(k,k") in the one component case.

In Fig. 10 is illustrated thé dependence of the Fourier
transform of the triplet direct correlation for isosceles con-
figurations of like and unlike particles at given configura-
tions. One readily sees that the BHP theory performs rather
well for all conditions. Note that the simulation value for the
configuration with co®=—1 has been directly evaluated
from the sum rulé15). The corresponding ISCVM functions
have not been included because for srkalblues the spuri-

FIG. 9. Angular dependence of the Fourier transform of the triplet directoys wiggles distort considerably tfi‘ggg(k,k') results, al-

correlation function for an isosceles configuration of unlike particles
c®)4(k.k,x) andc

(3)
BBa

(k,k,x).

though quite good agreement is found for largeralues.
In summary, we have seen that both the inhomogeneous
integral approach in its ISCVM formulation and the BHP

Hybrid Mean SphericalHMSA) closure. This can easily be ansatz provide a reliable alternative for the calculation of
understood since the double consistency criterion imposettiplet correlations, provided the pair structure is known. The
on the SCVM makes this approach considerably more accuSCVM approach, however, can be coupled to a TZWLMB
rate for hard sphere systerhs. equation and thus the requirement ofapriori knowledge

@3)

Bao

C

(k, k, x) 7]

FIG. 10. c?(k.k,x) vs ko for an
isosceles triangle configuration in a
hard-sphere binary mixture and vari-
ous configurations. Symbols corre-
spond to simulatior(open squares
=1), (up triangles, x=0), (open
circles,x=—1) and the sum rule Eq.
(15) result forx=—1 (filled circles.
Curves denote the BHP resullts.
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of the pair structure is removed, although at a considerabléor n=2, and

computational cost. On the other hand, the BHP ansatz can

be used to provide approximations for the bridge funéion

and thus yield an improved pair structure through an OZ fgv_v:(aw_bwmv)(l_TW)/2+ bw(l_ﬁw)m,
formalism. For practical purposes, and taking into account (A3)
the differences in the implementation of the two approaches

one might conclude that the ISCVM is more suitable to pro-

vide information on the triplet distribution function in Tuvy_ _ 2 _ .3
r-space, whereas Fourier transformed quantities and the trip- P =308y =Dy 7)) (1= 73, )44 Dy, (1 T‘”)IZ(A4)
let direct correlation itself are more amenable to be dealt

with in terms of the BHP formalism.

forn=0 and 1.
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