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Theory and simulation of the triplet structure factor and triplet direct
correlation functions in binary mixtures
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In this work we present structure factors and triplet direct correlation functions extracted from
extensive Monte Carlo simulations for a binary mixture of hard spheres. The results are compared
with the predictions of two integral equation theories, namely, a recently proposed extension to
mixtures of Attard’s inhomogeneous integral equation approach, and Barrat, Hansen, and Pastore’s
factorization ansatz. In general, both theories yield acceptable estimates for the triplet structure
functions, though, by construction, the inhomogeneous integral equation theory is more suited to
furnish triplet distribution function results, whereas the factorization ansatz provides a more handy
approach to triplet direct correlation functions. ©2002 American Institute of Physics.
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I. INTRODUCTION

Triplet correlation functions play an essential role in t
description of the structure and dynamics of fluids, in p
ticular for systems whose behavior cannot be explained
terms of simple models like the pure hard sphere system
the well known Lennard-Jones fluid. Thus for instance,
triplet correlation function provided key structural inform
tion to understand the role of the Peirls distortion and che
cal ordering in liquid GeTe.1 Also in a system like water, the
analysis of the triplet distribution function explained how t
decrease in the pair structure upon cooling near the tr
point is correlated with an increase in the local tetrahed
ordering of the water molecules.2 As to dynamics, Sciortino
and Kob3 have shown that the inclusion of the triple dire
correlation function in the framework of the Mode Couplin
Theory is essential to reproduce the wave-vector depend
of the Debye–Waller factor in supercooled silica. Howev
the actual calculation of the triplet correlation functions is
from being a trivial problem, neither theoretically nor
terms of computer simulation.4

The situation is even more involved when dealing w
multicomponent systems. The authors, in collaboration w
Kahl,5 recently presented a study of the extension to m
tures of the integral equation based on the factorization
satz proposed by Barrat, Hansen, and Pastore~BHP!.6 The
comparisons performed in Ref. 5 were carried out at the le
of triplet distribution functions given the scarcity of data
the literature for triplet direct correlation functions. Beside
in a recent work,7 the authors presented an extension to m
tures of Attard’s inhomogeneous integral equation formali
for the calculation of three body correlation functions8

which turned out to provide fairly good estimates for asy
metric Lennard-Jones mixtures. Still, what seems to be la
7300021-9606/2002/116(2)/730/7/$19.00
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ing in both cases is a clear assessment of the quality of b
approximations as far as the mixture direct correlation fu
tion is concerned. Therefore, in this work, we present
results of extensive Monte Carlo~MC! calculations for the
triplet direct correlation function and the triplet structure fa
tor for a hard sphere mixture and perform comparisons w
the theoretical approaches proposed in Refs. 5 and 7. F
the triplet structure factor, which can be extracted direc
from appropriate structural averages along the simula
run, it is possible to obtain the triplet direct correlation
Fourier space in a straightforward fashion.

For our inhomogeneous integral equation formalism
have chosen a self-consistent closure, the Self-Consis
Verlet’s Modified approach~SCVM!,9 which is known to
yield excellent results at the two particle level. Followin
Fushiki10 the self-consistency parameters are taken from
solution of the homogeneous equation. Also here the p
distribution functions, which will be shown to be extreme
accurate, are directly taken from the homogeneous equa
and are not iterated to self-consistency. The inhomogene
approach thus formulated will be denoted as inhomogene
SCVM ~ISCVM!. We will see that both the BHP theory us
ing as input the density derivatives of the pair correlati
function provided by the SCVM theory and the ISCVM a
proach provide a rather accurate picture of the three b
direct correlation functions and triplet structure facto
Moreover, the ISCVM triplet distribution function is particu
larly accurate. For this property, the BHP results are plag
with the some spurious effects stemming from the inve
Fourier transformation of a discontinuous function. But,
general, aside from these numerical uncertainties in the F
rier transforms, the accuracy of both approaches is com
rable.
© 2002 American Institute of Physics
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The rest of the paper is organized as follows: Sec. I
devoted to a brief presentation of the simulation details. S
tion III contains a summary of the inhomogeneous integ
equation approach. The essentials of the BHP ansatz in
mixture case are collected in Sec. IV. And finally, our mo
significant results are presented and commented upo
Sec. V.

II. SIMULATION OF TRIPLET CORRELATION
FUNCTIONS

The MC simulation technique has been used to stud
binary equimolar hard-sphere mixture with packing fracti
h5(p/6)(r/2)(saa

3 1sbb
3 )50.4—r being the total numbe

density—and a size ratiosaa /sbb50.8. The structure fac
tors Smn

(2)(k) and Smnj
(3) (k,k8) are calculated evaluating th

corresponding averages,11

Smn
~2!~k!5

1

N
^rk

mr2k
n &, ~1!

Smnj
~3! ~k,k8!5

1

N
^rk

mrk8
n r2k2k8

j &, ~2!

whereN is the particle number, and the Fourier compone
of the densityr(r )5S id(r2r i) are

rk5(
i

N

e2 ikr i. ~3!

Using the pair and triplet structure factors, the trip
direct correlation functionsc̃mnj

(3) (k,k8) can be calculated by
solving a linear system of equations, derived from the trip
Ornstein–Zernike equation,

Smnj
~3! ~k,k8!5(

esh
Sme

~2!~k!Sns
~2!~k8!Sjh

~2!~ uk1k8u!

3S 1

xe
2 desdeh1r2c̃esh

~3! ~k,k8! D . ~4!

It should be pointed out here that in Ref. 5 in the correspo
ing equation@Eq. ~15!# the indices of the pair functions ar
misplaced and as a consequence the results presented th
are affected by minor errors, as will be shown in the follo
ing sections. For the sake of simplicity only isosceles
angle configurations corresponding touku5uk8u5k and
cosu5kk 8/ukk 8u have been analyzed, and therefore t
maximum value ofuk1k8u is 2k ~see Fig. 1!. For a 500
particles sample, the simulation has been run along
3107 steps, which is of the order of the simulations recen
carried out to evaluate triplet correlations in liquid silica3

Statistical averages have been taken over 2.63106 configu-
rations, and standard errors have also been estimated u
block averages, leading to variances below 0.4% for the
structure factor, around 10% for the triplet structure fac
and ranging from 1 to 30% forc̃mnj

(3) (k,k8).

III. THE INHOMOGENEOUS INTEGRAL EQUATION

The inhomogeneous integral equation approach p
posed by Attard8 was already discussed for mixtures in Re
7, where it was applied to study a binary Lennard-Jones fl
Downloaded 27 Dec 2001 to 161.111.20.5. Redistribution subject to AI
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mixture. The theory analyzes the triplet structure of the flu
considering one of the particles of a given triplet as a sou
of an external field. Therefore, the Ornstein–Zernike~OZ!
integral equation becomes inhomogeneous~IOZ!, and for a
mixture of n components reads

hmngI
~2! ~r 1 ,r 2 ,u12!5cmngI

~2! ~r 1 ,r 2 ,u12!

1 (
l51

n E dr4rlgI ~r 4!cmlgI
~2! ~r 1 ,r 4 ,u14!

3hlngI
~2! ~r 4 ,r 2 ,u42!, ~5!

being hmngI
(2) (r1 ,r2) the pair total correlation function an

cmngI
(2) (r1 ,r 2) the pair direct correlation function. Coordinate

r1 and r2 correspond to particlesm andn, respectively, and
cosuij 5r ir j /r i r j .

This approach considers the source particle (gI ) as an
inhomogeneous perturbation in the system, and conseque
instead of the homogeneous densityrl we will have a den-
sity profile rlgI (r ) aroundgI . This density profile is actually
connected to the homogeneous pair distribution funct
throughrlgI (r )5rlglg(r ). As done in Ref. 7, it is possible
to obtain the density profile from the three particle distrib
tion functions by means of the Triezenberg–Zwanzi
Wertheim–Lovett–Mou–Buff~TZWLMB ! ~Refs. 12, 13!

FIG. 1. Isosceles triangle configuration ink-space.

FIG. 2. Pair structure factorsSmn
(2)(k) for a hard sphere mixture calculate

from simulation~symbols! and the SCVM integral equation~lines!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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equation and recalculate those triplet functions with a n
density profile, iterating until convergence. In this work, t
high quality of the density profiles obtained from the SCV
equation,9 enables their use as a direct input for Eq.~5!. No
iteration will be used since these profiles may be conside
essentially exact.

The IOZ equation is complemented with a closure re
tion which relates the interaction potentialvmn(r 12) to the
pair correlation functions. It can be formally written as fo
lows:

gmngI
~2! ~r 1 ,r 2 ,u12!5exp$2bvmn~r 12!1hmngI

~2! ~r 1 ,r 2 ,u12!

2cmngI
~2! ~r 1 ,r 2 ,u12!

1BmngI ~r 1 ,r 2 ,u12!%, ~6!

whereb51/KBT, r 125(r 1
21r 2

222r 1r 2 cosu12)
1/2, andBmngI

is the bridge function. In our calculations we have used
bridge function corresponding to the SCVM~Ref. 9! closure
which implements certain degree of thermodynamic con
tency. Namely,

BmngI ~r 1 ,r 2 ,u12!52
Fmn~r ,c!smngI ~r !2

2@11VmnsmngI ~r !#
, ~7!

FIG. 3. Triplet distribution function gaaa
(3) (r aa ,saa ,u) and

Gaaa(r aa ,saa ,u) between like particles in an isosceles configuration fo
hard sphere mixture. The source particle in the ISCVM approach is
smallest particlea.
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whereVmn5v(1.12rsmn
3 /3) andsmngI 5hmngI 2cmngI is the

indirect correlation function. The interpolation function ca
be expressed as

Fmn~r 1 ,r 2 ,u12;c!511@11tanh~r 122smn!#
c21

2
,

~8!

where the parametersc andv are taken from the solution o
the homogeneous equation7,10,14 in which consistency be-
tween virial and fluctuation theorem compressibility, a
also between chemical potential and virial pressure is
posed.

From a practical point of view, in order to solve the IO
equation the three particle functions are expanded in L
endre polynomials to obtain

ĥm
mngI ~r 1 ,r 2!5 ĉm

mngI ~r 1 ,r 2!

1
4p

2m11 (
l51

n E dr4r 4
2rlgI ~r 4!

3 ĉm
mlgI ~r 1 ,r 4!ĥm

lngI ~r 4 ,r 2!, ~9!

with the hatted quantities representing the coefficients of
inhomogeneous functions in the Legendre series andm

e

FIG. 4. Triplet structure factor for an isosceles configuration of like partic
Saaa

(3) (k,k,x) andSbbb
(3) (k,k,x) vs x5cosu. Open symbols denote simulatio

results forks55.46 and solid symbols correspond toks56.93. Dashed
curves represent BHP results and solid curves the ISCVM.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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denotes the order of the Legendre polynomial. The hard c
discontinuities introduce additional difficulties to evalua
the Legendre transforms. To cope with this we have follow
the procedure suggested by Attard8 which is summarized in
the Appendix for completeness, since some misprints h
been found in the expressions of Ref. 8. In order to so
Eqs.~5! and~6!, equations with different source particles a
decoupled as in Ref. 7. Also now the Generalized Minim
RESidual algorithm for nonlinear systems of equations~GM-
RESNL! ~Refs. 7, 15, 16! has been used to solve ea
coupled system of equations. The homogeneous SCVM
functions have been discretized on a grid of 2048 points w
mesh size 0.0125s ~s being the biggest particle diameter!.
The number of grid points on the radial coordinate was se
250, and the discrete Legendre transforms have been ca
out with 64 angular nodes.

From the solution of Eqs.~5! and~6! one gets the inho-
mogeneous pair distribution function, which relates to
triplet distribution function through

gmngI
~3! ~r 1 ,r 2 ,cosu12!5gmg~r 1!gng~r 2!

3gmngI
~2! ~r 1 ,r 2 ,cosu12!. ~10!

In turn, the triplet total correlation function is given by

hmng
~3! ~r ,r 8!5gmng

~3! ~r ,r 8!2hmg~r !2hng~r 8!

2hmn~ ur1r 8u!21, ~11!

FIG. 5. Same as Fig. 4 forks57.35 ~empty symbols! andks57.77 ~solid
symbols!.
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which relates with the sought triplet structure factor via

Smng
~3! ~k,k8!5dmndmgxm1dmgxmxnrh̃mn~k8!

1dngxmxgrh̃mg~k!

1dmnxnxgrh̃ng~ uk1k8u!1xmxnxgr2

3E e2 ikr me2 ik8rn8hmng
~3! ~r ,r 8!drdr 8. ~12!

From this, once more, the triplet direct correlation functi
can be evaluated by means of Eq.~4!.

IV. THE BHP THEORY

The theory of Barrat, Hansen, and Pastore6 assumes a
factorization ansatz for the triplet direct correlation functi
cmnj

(3) (r ,r 8) of the form,

cmnj
~3! ~r ,r 8!5tmn

mnj~ ur2r 8u!tmj
mnj~r !tnj

mnj~r 8!. ~13!

The tmn
mnj(r ) function of the ansatz can be calculate

from the sum-rule,

]cmj
~2!~r !

]rn
5E cmnj

~3! ~r ,r 8!dr 8

5tmj
mnj~r !E tnj

mnj~r 8!tmn
mnj~ ur2r 8u!dr 8, ~14!

FIG. 6. Triplet structure factor for an isosceles configuration of unlike p
ticles Saab

(3) (k,k,x) andSbba
(3) (k,k,x) vs x5cosu. Legend as in Fig. 4.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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734 J. Chem. Phys., Vol. 116, No. 2, 8 January 2002 Jorge, Lomba, and Abascal
which in k-space reads

] c̃mj
~2!~k!

]rn
5 c̃mnj

~3! ~k,k850!. ~15!

The derivatives of the direct correlation function are n
merically evaluated from the results of the SCVM equat
for the mixture and are the only input required. Once
tmn
mnj(r ) functions have been calculated, they are Four

transformed and used to calculatec̃mnj
(3) (k,k8). Introducing

c̃mnj
(3) (k,k8) in the triplet OZ integral equation@see Eq.~17!

in Ref. 5# one can obtainh̃mnj
(3) (k,k8) and, after an inverse

Fourier transform, the three particle total correlation fun
tion, hmnj

(3) (r ,r 8). Smnj
(3) (k,k8) is easily obtained from the Fou

rier transformed triplet direct correlation function using E
~4!.

All the numerical details relative to the calculation
within the BHP formalism can be found in Ref. 5.

V. RESULTS

As mentioned before, one of the key input quantities
the theoretical approaches dealt with herein, is the pair st
ture of the homogeneous fluid. In Fig. 2 we have plotted
partial structure factors obtained from the simulation av
ages and the SCVM results. It is immediately evident that
agreement is practically perfect. Consequently, we are co

FIG. 7. Same as Fig. 6 forks57.35 ~empty symbols! andks57.77 ~solid
symbols!.
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dent to use both the SCVM pair correlation functions
input for the ISCVM equation and to provide the derivativ
of the SCVM direct correlation function within the BHP for
malism.

Among the triplet distribution functions obtained from
theory and simulation, only that corresponding to like p
ticles is illustrated in Fig. 3 for isosceles configurations. T
BHP data presented here are in better agreement with
than those of Ref. 5 due to the correction of Eq.~4!. As
pointed out by Bildstein and Kahl17 for the single componen
case, the most accurate results are produced by the inho
geneous integral equation approach, i.e., by the ISCVM
our case. Note however, that the BHP results are plag
with the inaccuracies of the inverse Fourier transformat
which is a highly nontrivial numerical problem in the case
inhomogeneous functions. Also, as found in Ref. 7 the
sults of the ISCVM approach are considerably less accu
when the largest particle is taken as source particle. O
again, we might well think that the largest size implies
larger perturbation potential in the inhomogeneous integ
equation—let us recall here that the integral equation is
coupled according to the type of source particle used. It
also to be mentioned, that despite the inaccuracies stemm
from the inverse Fourier transform, the ISCVMg(3)s are in
somewhat better agreement with MC than the correspond
results obtained in Ref. 7 for Lennard-Jones systems usi

FIG. 8. Angular dependence of Fourier transform of the triplet dir
correlation function for an isosceles configuration of like particl
caaa

(3) (k,k,x) andcbbb
(3) (k,k,x).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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735J. Chem. Phys., Vol. 116, No. 2, 8 January 2002 Correlation functions in binary mixtures
Hybrid Mean Spherical~HMSA! closure. This can easily b
understood since the double consistency criterion impo
on the SCVM makes this approach considerably more ac
rate for hard sphere systems.9

FIG. 9. Angular dependence of the Fourier transform of the triplet dir
correlation function for an isosceles configuration of unlike partic
caab

(3) (k,k,x) andcbba
(3) (k,k,x).
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As to the triplet structure factor, this is depicted in Fig
4–7. One sees that both theoretical approaches yield re
almost within the statistical uncertainties of the simulatio
However, one observes that for given configurations the
CVM results exhibit certain artificial wiggles, which stem
from the Fourier transform procedure. The only alternative
suppress these wiggles is to increase the number of ra
coordinates and decrease the angular grid in the inhom
neous functions, however, the calculations presented he
are at the limit of the available computational facilitie
Nonetheless, as a whole, one would be tempted to say
both approaches have comparable accuracy.

Finally, in Figs. 8 and 9 we have depicted the results
c̃mnj

(3) (k,k,x) for different configurations. We can see that t
theoretical approaches yield results practically within the s
tistical uncertainties. Again here, the ISCVM results pres
the characteristic wiggles resulting from the Fourier tra
form, and these are magnified in the case ofc̃mnj

(3) (k,k8) due
to the way in which this quantity is obtained. This can
easily understood by examining the expressions that re
c̃(3)(k,k8) andS(3)(k,k8) in the one component case.

In Fig. 10 is illustrated thek dependence of the Fourie
transform of the triplet direct correlation for isosceles co
figurations of like and unlike particles at given configur
tions. One readily sees that the BHP theory performs ra
well for all conditions. Note that the simulation value for th
configuration with cosu521 has been directly evaluate
from the sum rule~15!. The corresponding ISCVM function
have not been included because for smallk values the spuri-
ous wiggles distort considerably thec̃mnj

(3) (k,k8) results, al-
though quite good agreement is found for largerk values.

In summary, we have seen that both the inhomogene
integral approach in its ISCVM formulation and the BH
ansatz provide a reliable alternative for the calculation
triplet correlations, provided the pair structure is known. T
ISCVM approach, however, can be coupled to a TZWLM
equation and thus the requirement of ana priori knowledge

t

a
i-
-

FIG. 10. cmnj
(3) (k,k,x) vs ks for an

isosceles triangle configuration in
hard-sphere binary mixture and var
ous configurations. Symbols corre
spond to simulation~open squares,x
51!, ~up triangles, x50!, ~open
circles,x521! and the sum rule Eq.
~15! result for x521 ~filled circles!.
Curves denote the BHP results.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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736 J. Chem. Phys., Vol. 116, No. 2, 8 January 2002 Jorge, Lomba, and Abascal
of the pair structure is removed, although at a considera
computational cost. On the other hand, the BHP ansatz
be used to provide approximations for the bridge functio6

and thus yield an improved pair structure through an
formalism. For practical purposes, and taking into acco
the differences in the implementation of the two approac
one might conclude that the ISCVM is more suitable to p
vide information on the triplet distribution function i
r-space, whereas Fourier transformed quantities and the
let direct correlation itself are more amenable to be de
with in terms of the BHP formalism.
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APPENDIX: TREATMENT OF DISCONTINUITIES IN
LEGENDRE TRANSFORMATIONS

A discontinuous functionf mngI can be constructed in
terms of amn(r 1 ,r 2 ,tmn)5hmngI

(2) (r 1 ,r 2 ,tmn) and
bmn(r 1 ,r 2 ,tmn)5(]hmngI

(2) (r 1 ,r 2 ,x)/]x)x5tmn
, which repre-

sent, respectively, the value of the total correlation funct
and its first derivative at the contact angle (tmn5cosumn),
such that

f mngI ~x!50 21<x,tmn

5amngI 1bmngI ~x2tmn! tmn<x<1 ~A1!

when added tohmngI
(2) (r 1 ,r 2 ,x) cancels its discontinuities a

contact. Besides, Eq.~A1! has an analytic Legendre tran
form of the form,

f̂ n
mngI 5~amn2bmntmn!

2n11

2n
@tmnPn~tmn!2Pn11~tmn!#

1
bmn

2 H F2n11

n21
tmn

2 2
2n11

~n21!~n12!G
3Pn~tmn!2tmn

~2n11!~n11!

~n21!~n12!
Pn11~tmn!J ~A2!
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le
an

Z
t
s
-

ip-
lt

-

n

for n>2, and

f̂ 0
mngI 5~amn2bmntmn!~12tmn!/21bmn~12tmn

2 !/4,
~A3!

f̂ 1
mngI 53~amn2bmntmn!~12tmn

2 !/41bmn~12tmn
3 !/2

~A4!

for n50 and 1.
In a first step one then obtains a continuous and smo

functionhmngI8(2) by addingf mngI (hmngI8(2)5hmngI
(2) 1 f mngI ) and then

transforms numericallyhmngI8(2) to get ĥn8
mngI . Finally, the ana-

lytical transform of f mngI is subtracted to obtain the desire

transform of the total correlation function (ĥn
mngI 5ĥn8

mngI

2 f̂ n
mngI ).
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